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THE BIGGER PICTURE Over 1.5 million scientific articles on biomedicine and life sciences are now pub-
lished and collected in the PubMed database every year. This vast scale makes it challenging to see how
biomedicine evolves in time. Large language models can produce embeddings of huge text corpora and
can thereby be leveraged to provide innovative visualizations of the scientific literature, as shown in
this work.
SUMMARY
The number of publications in biomedicine and life sciences has grown so much that it is difficult to keep
track of new scientific works and to have an overview of the evolution of the field as a whole. Here, we present
a two-dimensional (2D) map of the entire corpus of biomedical literature, based on the abstract texts of 21
million English articles from the PubMed database. To embed the abstracts into 2D, we used the large lan-
guage model PubMedBERT, combined with t-SNE tailored to handle samples of this size. We used our map
to study the emergence of the COVID-19 literature, the evolution of the neuroscience discipline, the uptake of
machine learning, the distribution of gender imbalance in academic authorship, and the distribution of re-
tracted paper mill articles. Furthermore, we present an interactive website that allows easy exploration
and will enable further insights and facilitate future research.
INTRODUCTION

The rate of scientific publishing has been increasing constantly

over thepast century,1,2withover 1million articlesbeingcurrently

published every year in biomedicine and life sciences alone. In-

formationabout academicpublications in thesefields is collected

in the PubMed database, maintained by the United States Na-

tional Library ofMedicine (pubmed.ncbi.nlm.nih.gov). It nowcon-

tains over 35 million scientific papers from the last 50 years.

This rapid growth of the biomedical literature makes it diffi-

cult to track the evolution of biomedical publishing as a whole.

Search engines such as PubMed and Google Scholar allow

researchers to find specific papers given suitable keywords

and to follow the citation networks that these papers are

embedded in, yet none of them allows exploration of the

biomedical literature landscape from a global perspective.

This makes it hard to see how research topics evolve over

time, how different fields are related to each other, or how

new methods and techniques are adopted in different fields.

What is needed to answer such questions is a bird’s eye

view on the biomedical literature.
Pattern
This is an open access article under the
In this work we develop an approach that enables all of the

above: a global two-dimensional (2D) atlas of the biomedical

and life science literature that is based on the abstracts of all

21 million English language articles contained in the PubMed

database. For simplicity, our map is based on the abstract texts

alone, and does not rely on other article parts, such as its main

text, figures, or references. To create the map, we embedded

the abstracts into two dimensions using the transformer-based

large language model PubMedBERT3 combined with the

neighbor-embedding method t-SNE,4 adapted to handle sam-

ples of this size. Our approach allowed us to create a map with

the level of detail substantially exceeding previous works.5,6

We argue that our visualization facilitates exploration of the

biomedical literature and can reveal aspects of the data that

would not be easily noticed with other analysis methods. We

showcase the power of our approach in five examples: we stud-

ied (1) the emergence of theCOVID-19 literature, (2) the evolution

of different subfields of neuroscience, (3) the uptake of machine

learning in the life sciences, (4) the distribution of gender imbal-

ance across biomedical fields, and (5) the distribution of re-

tracted paper mill articles. In all cases, we used the embedding
s 5, 100968, June 14, 2024 ª 2024 Published by Elsevier Inc. 1
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Table 1. Quality metrics for the embeddings

Data Dim. Acc. (%) RMSE Recall (%)

PubMedBERT 768 69.7 8.4 –

TF-IDF 4,679,130 65.2 8.8 –

t-SNE(BERT) 2 62.6 10.2 6.2

t-SNE(TF-IDF) 2 50.6 11.2 0.7

Chance – 4.3 12.4 0.0

Acc., kNN accuracy (k = 10) of label prediction; RMSE, root mean-

squared error of kNN prediction of publication year; Recall, overlap

between k nearest neighbors in the 2D embedding and in the high-dimen-

sional space. See experimental procedures for details.
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to formulate specific hypotheses about the data that were later

confirmed by a dedicated statistical analysis of the original

high-dimensional dataset.

The resulting map of the biomedical research landscape is

publicly available as an interactive web page at https://static.

nomic.ai/pubmed.html, developed using the deepscatter li-

brary.7 It allows users to navigate the atlas, zoom, and search

by article title, journal, and author names, while loading individual

scatter points on demand. We envisage that the interactive map

will allow further insights into the biomedical literature, beyond

the ones we present in this work.
RESULTS

2D atlas allows to explore the PubMed database
We downloaded the complete PubMed database (2021 snap-

shot) and, after initial filtering (see experimental procedures),

were left with 20,687,150 papers with valid English abstracts,

the majority of which (99.8%) were published in 1970–2021 (Fig-

ure S1). Our goal was to generate a 2D embedding of the ab-

stract texts to facilitate exploration of the data.

To annotate our atlas, we chose a set of 38 labels covering

basic life science fields such as ‘‘virology’’ and ‘‘biochemistry,’’

and medical specialties such as ‘‘radiology’’ and ‘‘ophthal-

mology.’’ We assigned each label to the papers published in

journals with the corresponding word in journal titles. For

example, all papers published in Annals of Surgery were labeled

‘‘surgery.’’ As a result, 34.4% of all papers received a label, while

the rest remained unlabeled. This method misses papers pub-

lished in interdisciplinary journals such as Science or Nature,

but labels the core works in each discipline. We chose our labels

so that theywould cover every region of the 2D space. Therefore,

despite only having 34% of the papers labeled, we consider this

fraction to be representative of the whole landscape.

To generate a 2Dmap of the entire PubMed database, we first

obtained a 768-dimensional numerical representation of each

abstract using PubMedBERT,3 which is a Transformer-based8

language model trained on PubMed abstracts and full-text arti-

cles from PubMed Central. We then reduced the dimensionality

to two using t-SNE.4

For the initial step of computing a numerical representation of

the abstracts, we evaluated several text processing methods,

including bag-of-words representations such as TF-IDF (term

frequency-inverse document frequency)9 and several other

BERT-derived models, including the original BERT,10 SBERT,11
2 Patterns 5, 100968, June 14, 2024
SciBERT,12 BioBERT,13 SPECTER,14 SimCSE,15 and SciNCL.16

We chose PubMedBERT because it best grouped papers

together in terms of their label, quantified by the k nearest

neighbor (kNN) classification accuracy when each label is pre-

dicted based on the most frequent label of its 10 nearest neigh-

bors (Table S2). For the PubMedBERT representation, this pre-

diction was correct 69.7% of the time (Table 1). For

comparison, TF-IDF, which is simpler and faster to compute,

yielded lower kNN accuracy (65.2%).

For the second step, we used t-SNEwith several modifications

that allowed us to run it effectively on very large datasets. These

modifications included uniform affinities to reduce memory con-

sumption and extended optimization to ensure better conver-

gence (see experimental procedures). With these modifications,

t-SNE performs better than other neighbor-embedding methods

such as UMAP17 in terms of kNN accuracy and memory require-

ments.18 The resulting embedding showed good label separa-

tion, with kNN accuracy in 2D of 62.6%, not much worse than

in the 4,679,130-dimensional TF-IDF representation.

We interpret the resulting embedding as the map of the

biomedical literature (Figure 1). It showed sensible global organi-

zation, with natural sciences mainly located on the left side and

medical specialties gathered on the right side; physics- and en-

gineering-related works occupied the bottom-left part

(Figures S2 and S3). Related disciplines were located next to

each other: for example, the biochemistry region was overlap-

ping with chemistry, whereas psychology was merging into psy-

chiatry. A t-SNE embedding based on the TF-IDF representation

had similar large-scale structure but worse kNN accuracy

(50.6%; Figure S4).

In addition to this global structure, the map revealed rich and

detailed fine structure and was fragmented into small clusters

containing hundreds to thousands of papers each (Figure S5A).

Even though immediate neighborhoods were distorted

compared with the 768-dimensional PubMedBERT representa-

tion (only 6.2% of the nearest neighbors in R2 were nearest

neighbors inR768; we call this metric kNN recall), manual inspec-

tion of the clusters suggested that they consisted of papers on

clearly defined narrow topics.

Moreover, the map had rich temporal structure, with papers of

the same age tending to be grouped together (Figure 1B). While

this structure may be influenced by changes in writing style and

common vocabulary, it is likely primarily caused by research

topics evolving over time and becoming more or less fashion-

able. The most striking example of this effect is a cluster of

very recent papers published in 2020–2021 that is very visible

in the middle of the map (bright yellow in Figure 1B). We will

use this island as our first example of how the map can be

used to guide understanding of the publishing landscape and

how it allows to form hypotheses about the structure and tempo-

ral evolution of biomedical research. We will show that these hy-

potheses can be rigorously confirmed in the high-dimensional

embedding space.

The COVID-19 literature is uniquely isolated
The bright yellow island we identified above comprised works

related to COVID-19 (Figure 1B), with 85% of papers on

COVID-related topics, and 15% on other respiratory epidemics.

Our dataset included in total 132,802 COVID-related papers

https://static.nomic.ai/pubmed.html
https://static.nomic.ai/pubmed.html
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Figure 1. 2D embedding of the PubMed dataset

Paper abstracts (n = 21 million) were transformed into 768-dimensional vectors with PubMedBERT3 and then embedded in 2D with t-SNE.4

(A) Colored using labels based on journal titles. Unlabeled papers are shown in gray and are displayed in the background.

(B) Colored by publication year (dark, 1970 and earlier; light, 2021).
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(based on terms such as COVID-19, SARS-CoV-2, etc., present

in their abstracts; see experimental procedures), which consti-

tuted 5.2% of all PubMed papers published in 2020–2021. As

the pandemic and its effects were studied by many different

biomedical fields, one might have expected the COVID papers

to be distributed across the embedding in their corresponding

disciplines. Instead, most (59.3%) of the COVID-related papers

were grouped together in one cluster, while the rest were

sparsely distributed across the map (Figure S6A).

ThemainCOVIDclusterwas surroundedbyarticlesonother ep-

idemics, public health issues, and respiratory diseases. When we

zoomed in, we found rich inner structure within the COVID cluster

itself, with multiple COVID-related topics separated from each

other (Figure 2). Papers on mental health and societal impact, on

public health and epidemiological control, on immunology and

vaccines, on clinical symptoms and treatment were all largely

non-overlapping, andwere further divided into evennarrower sub-

fields. This suggests that our map can be useful for navigating the

literature on the scale of narrow and focused scientific topics.

Seeing that the COVID papers prominently stood out in the

map (Figure 1B), we hypothesized that the COVID literature

was more isolated from the rest of the biomedical literature,

compared with other similar fields. To test this, we selected

several comparable sets of papers, such as papers on HIV/

AIDS or influenza, or all papers published in virology or ophthal-

mology journals (two labels that appeared particularly compact

in Figure 1A). We measured the isolatedness of each corpus in

the high-dimensional space by the fraction of their kNNs that be-

longed to the same corpus. We found that, indeed, COVID liter-

ature had the highest isolatedness, in both BERT (80.6%) and

TF-IDF (76.2%) representations (Table 2). This suggests that

the COVID-19 pandemic had an unprecedented effect on the

scientific literature, creating a separate and uniquely detached

field of study in only 2 years.
We investigated the driving factors behind the emergence of

the COVID island in the 2D space using the TF-IDF representa-

tion and saw that, even though the presence of COVID keywords

(such as ‘‘COVID’’ or ‘‘SARS-Cov’’) did play some role in the is-

land formation, it was not the only source of similarity between

COVID papers (Figure S7).

Changing focus within neuroscience
As we have seen in the extreme example of the COVID literature,

the atlas can be used to study composition and temporal trends

across disciplines.We next show how it can also provide insights

into shifting topics and trends inside a discipline. We demon-

strate this using the example of neuroscience. Neuroscience pa-

pers (n = 240;135) in the map were divided into two main clus-

ters (Figure 3A). The upper one contained papers on molecular

and cellular neuroscience, while the lower one consisted of

studies on behavioral and cognitive neuroscience. While it has

been shown that articles in brain-related journals show a separa-

tion between basic science and clinical applications,19 our map

revealed a different bimodality, separating cellular from behav-

ioral neuroscience. Several smaller clusters comprised papers

on neurodegenerative diseases and sensory systems.

Coloring this part of the embedding by publication year indi-

cated that the cellular/molecular region on average had older pa-

pers than the cognitive/behavioral region (Figure 3B). This sug-

gests that the relative publication volume in different subfields

of neuroscience has changed with time. To test this hypothesis

directly, we devised a metric measuring the overlap between

neuroscience and any given related discipline across time. We

defined kNN overlap as the fraction of kNNs of neuroscience pa-

pers that belonged to a given discipline in the high-dimensional

space. We found that the overlap of neuroscience with physi-

ology and pharmacology has decreased since the 1970s, while

its overlap with psychiatry, psychology, and computation has
Patterns 5, 100968, June 14, 2024 3



Figure 2. COVID-19 region of the map

Colors are assigned using the most common keywords appearing in paper

titles. Uncolored COVID papers are shown in the background in gray. This

region in the embedding also contained some non-COVID papers (� 15%)

about other respiratory epidemics; they are not shown.
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increased, in particular after the 1990s (Figure 3C). Indeed, neuro-

science originated as a study of the nervous system within phys-

iology, but gradually broadened its scope to include cognitive

neuroscience, related to psychology, as well as computational

neuroscience, related to computer science andmachine learning.

The uptake of machine learning
In recent years, computational methods and machine learning

have increasingly found use in various biomedical disci-

plines.20 To explore the use of machine learning (ML) in the

biomedical landscape, we computed the fraction of papers

claiming to use machine learning (defined as papers

mentioning ‘‘machine learning’’ in their abstracts) within

different medical disciplines across time (Figure 4A). We found

that the uptake of ML differed substantially across disciplines.

Radiology was the first discipline to show an increase in ML

adoption, shortly after 2015, followed by psychiatry and

neurology. In oncology, ML adoption started later but showed

accelerated rise over the last 5 years. This is in contrast with

specialties such as dermatology and gynecology, which did

not see any ML usage until �2020.

However, this simple analysis is constrained by the set of la-

bels chosen a priori. The 2Dmap allows an unbiased exploration

that does not rely on labels. For that, we highlighted all machine

learning papers (n = 38;446) in the embedding (Figure 4B). Pa-

pers claiming to use machine learning were grouped in the map

into several clusters, covering topics ranging from computational

biology to healthcare data management. These ML papers were

more prevalent in the life science half of the map (left) and rather
4 Patterns 5, 100968, June 14, 2024
rare in the medical part (right). Within the medical part of the

corpus, ML papers were concentrated in several regions, such

as analysis of tumor imaging (radiology) or cancer biomarkers

(oncology).

To further explore the ML-heavy regions, we selected and

manually labeled 12 of them (Figure 4B) and computed the frac-

tion of papers mentioning specific ML and statistical methods

(Table S1). We found that the usage of ML techniques varied

strongly across regions. Deep learning and convolutional net-

works were prominent in the image segmentation region (with

applications, e.g., in microscopy). Clustering was often used in

analyzing sequencing data. Neural networks and support vector

machines were actively used in structural biology. Principal

component analysis was important for data analysis in mass

spectrometry.

We expanded this analysis to the whole corpus by identifying

342,070 papers (1.7%) mentioning the same ML and statistical

methods in their abstracts (Figure 4C).We found that themedical

part of the embedding was dominated by classical linear

methods such as linear regression and factor analysis, whereas

more modern nonlinear and nonparametric methods were

mostly used in non-medical research. This shows that the med-

ical disciplines are being slower in taking up new computational

techniques compared with basic life sciences.

Exploring the gender gap
In this section we show how the map can be used to explore and

better understand social disparities in biomedical publishing

such as the extent and distribution of the well-known gender

imbalance in academic authorship.21–25 We used the first

name (where available) of the first and the last author of every

PubMed paper to infer their gender using the gender tool.26

The gender inference is only approximate, as many first names

were absent in the US-based training data, biasing our analysis

toward Western academia, and some names are inherently

gender-ambiguous (see experimental procedures). Overall, this

procedure allowed us to infer the gender of 62.3%/63.1% first/

last authors with available first names. Among those, 42.4% of

first authors and 29.1% of last authors were female. While

some academic fields, such as mathematics and physics, tend

to prefer alphabetic ordering of the authors, in biomedicine the

first author is usually the trainee (PhD student or postdoc) who

did the practical hands-on project work and the last author is

the supervisor or principal investigator.

The fraction of female authors steadily increased with time

(Figure 5A), with first and last authors being 47.2%and 34.4% fe-

male in 2021. We found a delay of �20 years between the first

and the last author curves, suggesting that it takes more than

one academic generation for the differences in gender bias to

propagate from mentees to mentors.

Within most individual disciplines, the fraction of female first

authors increased with time (Figure 5B), even in disciplines

where this fraction was already high, such as education

(increased from 55% female in 2005 to 60% in 2020). This in-

crease also happened in male-dominated fields such as compu-

tation, physics, or surgery (increase from 15% to 25%). Notably,

the female proportion inmaterial sciences showed only amodest

increase, while nursing, the most female-dominated discipline

across all our labels (80.4%), showed a moderate decrease.



Table 2. Isolatedness metric for several sets of papers

n BERT (%) TF-IDF (%)

COVID-19 132,802 80.6 76.2

HIV/AIDS 308,077 63.9 62.3

Influenza 90,575 57.9 64.1

Meta-analysis 145,358 52.6 38.5

Virology 112,807 47.7 39.1

Ophthalmology 144,411 47.7 43.6

Fraction of k nearest neighbors of papers from each corpus that also

belong to the same corpus (see experimental procedures). The first

four rows show corpora selected based on the abstract text; the last

two, based on the journal name.
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Our map, when colored by gender, also showed that female

authors were not equally distributed across the biomedical

publishing landscape (Figure 5C). First and last female authors

were most frequent in the lower right corner of the embedding,

covering fields such as nursing, education, and psychology.

Furthermore, the map allowed us to explore gender bias

beyond the discipline level, revealing a substantial heterogene-

ity of gender ratios within individual disciplines. For example, in

healthcare (overall 49.6% female first authors), there were

male- and female-dominated regions in the map. One of the

more male-dominated clusters (33.9% female) focused on

financial management, while one of the more female ones

(68.1% female) focused on patient care (Figure 5C). In educa-

tion (58.6% female authors), female authors dominated

research on nursing training, whereas male authors were

more frequent in research on medical training (Figure 5D). In

surgery, only 24.4% of the first authors were female, but this

fraction increased to 61.1% in the cluster of papers on veteri-

nary surgery (Figure 5E). This agrees with veterinary medicine

being a predominantly female discipline (52.2% in total, Fig-

ure 5G). Importantly, these details are lost when averaging

across a priori labels, while the embedding can suggest the

relevant level of granularity.

Retracted papers highlight suspicious literature
We identified 11,756 papers flagged as retracted by PubMed

and still having intact abstracts (not containing words such as

‘‘retracted’’ or ‘‘withdrawn’’; see experimental procedures).

These papers were not distributed uniformly over the 2D map

(Figure 6) but instead concentrated in several specific areas, in

particular on top of the map, covering research on cancer-

related drugs, marker genes, and microRNA. These areas are

known targets of paper mills,27–29 which are organizations that

produce fraudulent research papers for sale.

Our map is based solely on textual similarity between ab-

stracts. This suggests that non-retracted papers from the re-

gions with high concentration of retracted papers may require

an investigation, as their abstracts are similar to the ones from

paper mill products. As an example, we considered a region

with particularly high fraction (45/422) of retracted papers (sec-

ond inset in Figure 6) and randomly selected 25 non-retracted

papers for manual inspection. They had similar title format (var-

iations of ‘‘MicroRNA-X does Y by targeting Z in osteosar-

coma’’30), paper structure, and figure style, and 24/25 of them
had authors affiliated with Chinese hospitals—features that are

often shared by paper mill products.29,31–36 Moreover, many

areas with high fraction of retractions consisted of papers stem-

ming mostly from a single country, typically China (Figure S8),

which could by itself be an indicator of paper mill activity.

After we conducted our analysis, the Retraction Watch data-

base of retracted papers was made open to the public. Using

their database, we identified an additional 3,572 papers in our

map that were not marked as retracted in PubMed but were in

fact retracted (red dots in Figure 6). They were mostly located

in the same areas of the map that we identified as suspicious

above, validating our conclusions. This does not guarantee

that all papers in these areas are fraudulent, but confirms that

our 2D map can be used to highlight papers requiring further

editorial investigation.37 If additional paper mills are discovered

in the future, our map will help to highlight literature clusters

requiring further scrutiny.

DISCUSSION

We developed a 2D atlas of the biomedical literature based on

the PubMed collection of 21 million paper abstracts using a

transformer-based language model (PubMedBERT) and a

neighbor-embedding visualization (t-SNE) tailored to handle

large document libraries. We used this atlas as an exploration

tool to study the biomedical research landscape, generating hy-

potheses that we later confirmed using the original high-dimen-

sional data. Using five distinct examples—the emergence of the

COVID-19 literature, the evolution of the neuroscience discipline,

the uptake of machine learning, the gender imbalance, and the

concentration of retracted fraudulent papers—we argued that

2D visualizations of text corpora can help uncover aspects of

the data that other analysis methods may fail to reveal.

We also developed an interactive web version of the embed-

ding (https://static.nomic.ai/pubmed.html) based on the deep-

scatter library,7 which allows to navigate the atlas, zoom, and

search by title, journal, or author names. In deepscatter, individ-

ual points are loaded on demand when zooming-in, like when

navigating geographical maps in the browser. This interactive

website contains a separate embedding of the latest PubMed

data, including 2022–2023 papers (Figures S9–S10). We plan

on updating the visualization in the future using annual

PubMed releases.

Neighbor-embedding methods such as t-SNE have known

limitations. For the datasets of our size, the few closest neigh-

bors in the 2D embedding space are typically different from the

neighbors in the high-dimensional BERT representation (Ta-

ble 1). This makes our map suboptimal for finding the most

similar papers to a given query paper, and other tools, such

as conventional (Google Scholar, PubMed) or citation-based

(connectedpapers.com) search engines, may be more appro-

priate for this task. Instead, our map is useful for navigating

the literature on the scale of narrow and focused scientific

topics. Neighbor-embedding algorithms can misrepresent the

global organization of the data.38–40 We used methods de-

signed to mitigate this issue18,39,41 and, indeed, found that

related research areas were located close to each other.

In annotating our atlas, we selected 38 labels spanning

various life science fields and medical specialties. Each label
Patterns 5, 100968, June 14, 2024 5

https://static.nomic.ai/pubmed.html
http://connectedpapers.com


A B C

Figure 3. Neuroscience literature

(A) Articles published in neuroscience journals, colored by presence of specific keywords in paper titles.

(B) The same articles colored by the publication year (dark, 1970 and earlier; light, 2021).

(C) Fraction of the high-dimensional kNNs of neuroscience papers that belonged to a given discipline (biochemistry, computation, neurology, pharmacology,

physiology, psychiatry, psychology). We chose to analyze those disciplines because they had the highest confusion scores with the neuroscience class in a kNN

classifier. Points: yearly averages. Smooth curves and 95% confidence intervals were obtained with generalized additive models (see experimental procedures).
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was assigned to papers in journals with the corresponding

word in their titles, resulting in 34.4% of papers being labeled.

Although this method overlooks interdisciplinary journals such

as Science or Nature, it ensures that core works in each disci-

pline are labeled. While PubMed uses several systems to orga-

nize articles into categories (such as keywords or Medical Sub-

ject Headlines [MeSH] terms), creating labels based on them

would likely require a more involved manual curation process.

We found that our labels covered most of the 2D space (Fig-

ure 1), and therefore considered the labeled subset representa-

tive of the entire landscape.

Our atlas provides the most detailed visualization of the

biomedical literature landscape to date. Previously, PubMed ab-

stracts were clustered based on textual bag-of-words similarity

and citation information, and the clusters were displayed using

a 2D embedding.5 Their map exhibits similar large-scale organi-

zation, but only shows 29,000 clusters, so our map is almost

three orders of magnitude more detailed. The BioBERT model

was previously applied to the PubMed dataset to extract infor-

mation on biomedical concepts, such as proteins or drugs.42

Previous work on visualizing large text corpora includes

Schmidt43 and González-Márquez et al.18 Both were based on

bag-of-words representations of the data. Here, we showed

that BERT-based models outperform TF-IDF for representing

scientific abstracts.

An alternative approach to visualizing collections of academic

works is to use information on citations as a measure of similar-

ity, as opposed to semantic or textual similarity. For example,

paperscape.org visualizes 2.2 million papers from the arXiv pre-

print server using a force-directed layout of the citation graph.
6 Patterns 5, 100968, June 14, 2024
Similarly, opensyllabus.org uses node2vec44 and UMAP to visu-

alize 1.1 million texts based on their co-appearance in the US

college syllabi. Similar approach was used by Noichl45 to visu-

alize 68,000 articles on philosophy based on their reference lists.

Here, we based our embedding on the abstract texts alone, and

in future work it would be interesting to combine textual and co-

citation similarity in one map (citation graph for PubMed papers

can be obtained from OpenAlex,46 MAG,47 and/or PubMed it-

self). The functionality of our interactive web version is similar

to opensyllabus.org and paperscape.org, but we successfully

display one order of magnitude more points.

We achieved the best representation of the PubMed abstracts

using the PubMedBERT model. As the progress in the field of

languagemodels is currently very fast, it is likely that a better rep-

resentation may soon become available. One promising

approach could be to train sentence-level models such as

SBERT11 on the biomedical text corpus. Another active avenue

of research is fine-tuning BERT models using contrastive

learning15,48 and/or using citation graphs.14,16 While we found

that these models were outperformed by PubMedBERT, similar

methods49 could be used to fine-tune the PubMedBERT model

itself, potentially improving its representation quality further.

Finally, larger generative language models such as recently

developed BioGPT50 or BioMedLM51 can possibly lead to better

representations as well.

In conclusion, we suggested a novel approach for visualizing

large document libraries and demonstrated that it can facilitate

data exploration and help generate novel insights. Many further

meta-scientific questions can be investigated in the future using

our approach.

http://paperscape.org
http://opensyllabus.org
http://opensyllabus.org
http://paperscape.org
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Figure 4. Machine learning papers

(A) Percentage of papers mentioning ‘‘machine learning’’ in their abstracts across time for different medical disciplines. Smooth curves and 95% confidence

intervals were obtained using generalized additive models and the points correspond to yearly percentages (see experimental procedures).

(B) Papers mentioning ‘‘machine learning’’ in their abstracts, grouped into 12 clusters that we manually labeled.

(C) Papers colored according to various statistical and machine learning methods mentioned in their abstracts. PCA, principal component analysis; RF, random

forest; DL, deep learning; CNN, convolutional neural network; SVM, support vector machine; DR, dimensionality reduction; NN, neural networks; LR, linear

regression; FA, factor analysis. Some of the highlighted NN papers may refer to biological neural networks.

ll
OPEN ACCESSArticle
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Dmitry Kobak (dmitry.kobak@uni-

tuebingen.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The analysis code is available at https://github.com/berenslab/

pubmed-landscape. All original code has been deposited at Zenodo

under https://doi.org/10.5281/zenodo.10727578,52 and is publicly

available as of the date of publication.

d This paper analyzes existing, publicly available data. It can be obtained

by directly accessing the bulk download service (www.nlm.nih.gov/

databases/download/pubmed_medline.html) from PubMed. We made

publicly available a processed version of our dataset: a csv.zip file

(20,687,150 papers, 1.3 GB) including PMID, title, journal name, publica-

tion year, embedding x and y coordinates, our label, and our color used

in Figure 1A. We also included two additional files: the raw abstracts

(csv.zip file, 9.5 GB) and the 768-dimensional PubMedBERT embed-

dings of the abstracts (NumPy array in float16 precision, 31.8 GB).

They can all be downloaded from Zenodo under https://doi.org/10.

5281/zenodo.7695389.53

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
PubMed dataset

We downloaded the complete PubMed database (295 GB) as XML files

using the bulk download service (www.nlm.nih.gov/databases/download/

pubmed_medline.html). PubMed releases a new snapshot of their database

every year; they call it a ‘‘baseline.’’ In our previous work18 we used the 2020

baseline (files called pubmed21n0001.xml.gz to 1062.xml.gz, download

date: 26.01.2021). In this work, we supplemented themwith the additional files

from the 2021 baseline (files called pubmed22n1062.xml.gz to 1114.xml.gz,

download date: 27.04.2022). After the analysis was completed, we realized

that our dataset had 0.07% duplicate papers; they should not have had any

noticeable influence on the reported results.

We used the Python xml package to extract PubMed ID, title, abstract, lan-

guage, journal title, ISSN, publication date, and author names of all 33.4
million papers. We filtered out all 4.7 million non-English papers, 10.8 million

papers with empty abstracts, 0.3 million papers with abstracts shorter than

250 or longer than 4,000 symbols (Figures S1 and S11), and 27,000 papers

with unfinished abstracts. Papers with unfinished abstracts needed to be

excluded because otherwise they were grouped together in the BERT repre-

sentation, creating artifact clusters in the embedding. We defined unfinished

abstracts as abstracts not ending with a period, a question mark, or an

exclamation mark. Some abstracts ended with a phrase ‘‘(ABSTRACT

TRUNCATED AT . WORDS)’’ with a specific number instead of ‘‘ . ’’.

We removed all such phrases and analyzed the remaining abstracts as usual,

even though they did not contain the entire text of the original abstracts. In

some cases, abstracts were divided in subsections (such as methods, re-

sults, etc.). We excluded subsection titles so that the resulting abstract

had effectively a single paragraph. Overall, we were left with 20,687,150 pa-

pers for further analysis.

This collection contains papers from the years 1808–2022. MEDLINE, the

largest component of PubMed, started its record in 1966 and later included

some noteworthy earlier papers. Therefore, the majority (99.8%) of the

PubMed papers are post-1970 (Figure S1C). There are only few papers from

2022 in our dataset. The 2021 data in this PubMed snapshot were also

incomplete.
Label assignment

We labeled the dataset by selecting 38 keywords contained in journal titles

that reflected the general topic of the paper. We based our choice of key-

words on lists of medical specialties and life science branches that ap-

peared frequently in the journal titles in our dataset. The 38 terms are:

anesthesiology, biochemistry, bioinformatics, cancer, cardiology, chemis-

try, computation, dermatology, ecology, education, engineering, environ-

ment, ethics, genetics, gynecology, healthcare, immunology, infectious,

material, microbiology, neurology, neuroscience, nursing, nutrition,

ophthalmology, optics, pathology, pediatric, pharmacology, physics, phys-

iology, psychiatry, psychology, radiology, rehabilitation, surgery, veteri-

nary, and virology.

Papers were assigned a label if their journal title contained that term, either

capitalized or not, and were left unlabeled otherwise. Journal titles containing

more than one term were assigned randomly to one of them. This resulted in

7,123,706 labeled papers (34.4%).

Our journal-based labels do not constitute the ground truth for the topic of

each paper, and so the highest possible classification accuracy is likely well

below 100%. Nevertheless, we reasoned that the higher the classification
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Figure 5. Gender bias in academic authorship

(A) Fraction of female first and last authors across time. The amount of available first names increased dramatically after 2003 (Figure S1C). Smooth curves and

confidence intervals were obtained using generalized additive models (see experimental procedures).

(B) Fraction of female first authors across time for different disciplines.

(C) Papers colored by the inferred gender of their first authors.

(D) Papers colored by the inferred gender of their last authors.

(E–G) Regions of the map showing within-label heterogeneity in the distribution of first authors’ gender: in healthcare (E), education (F), and surgery (G). Only

papers belonging to those labels are shown.

ll
OPEN ACCESS Article
accuracy, the better the embedding, and found this metric to be useful to

compare different representations (Tables 1 and S2).

BERT-based models

We used PubMedBERT3 to obtain a numerical representation of each ab-

stract. Specifically, we used the HuggingFace’s transformers library and the

publicly released PubMedBERTmodel. PubMedBERT is a Transformer-based

language model trained in 2020 on PubMed abstracts and full-text articles

from PubMed Central.

In pilot experiments, we compared performance of eight BERT variants:

the original BERT,10 SciBERT,12 BioBERT,13 PubMedBERT,3 SBERT,11

SPECTER,14 SimCSE,15 and SciNCL.16 The exact HuggingFace models that

we used were:

(1) bert-base-uncased

(2) allenai/scibert_scivocab_uncased

(3) dmis-lab/biobert-v1.1

(4) microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

(5) sentence-transformers/all-mpnet-base-v2

(6) allenai/specter
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(7) malteos/scincl

(8) princeton-nlp/unsup-simcse-bert-base-uncased

All of these models have the same architecture (bert-base; 110 million pa-

rameters) but were trained and/or fine-tuned on different data. The original

BERT was trained on a corpus of books and text from Wikipedia. SciBERT

was trained on a corpus of scientific articles from different disciplines.

BioBERT fine-tuned the original BERT on PubMed abstracts and full-text arti-

cles from PubMedCentral. PubMedBERT was trained on the same data from

scratch (and its vocabulary was constructed from PubMed data, whereas

BioBERT used BERT’s vocabulary).

The other four models were fine-tuned to produce sentence embeddings

instead of word embeddings, i.e., to generate a single vector representation

of the entire input text (we treated each entire abstract as one single ‘‘sen-

tence’’ when providing it to these models). SBERT fine-tuned BERT using a

corpus of similar sentences and paragraphs; the specific model that we

used was obtained via fine-tuning MPNet.54 According to SBERT’s authors,

this is currently the most powerful generic SBERT model; note that their

training procedure has evolved since the original approach described in Reim-

ers and Gurevych.11 SPECTER and SciNCL, both fine-tuned the SciBERT



Figure 6. Retracted papers group together

All papers flagged as retracted by PubMed with intact abstracts (11,756) are

highlighted in black, plotted on top of the non-retracted papers. Additional

retracted papers (3,572) from the RetractionWatch database are shown in red.

First inset corresponds to one of the regions with higher density of retracted

papers (4.2%), covering research on cancer-related drugs, marker genes, and

microRNA. Second inset corresponds to a subregion with a particularly high

fraction of retracted papers (11.8%), the one we used for manual inspection.
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model using contrastive loss functions based on the citation graph. SimCSE

fine-tuned the original BERT using a contrastive loss function between the sen-

tence representations obtained with two different dropout patterns, using Wi-

kipedia texts.

For this pilot experiment, we used a subset of our data (n = 1; 000; 000

labeled papers; 990,000 were used as a training set and 10,000 as a test

set) to measure kNN accuracy (k = 10) of each of these models, and ob-

tained the highest accuracy with PubMedBERT (see Table S2). This made

sense as PubMedBERT’s training data largely overlapped with our dataset.

We found that SBERT performed better than BERT, but did not reach the

level of PubMedBERT on our task. SimCSE did not outperform the original

BERT in our benchmark. SPECTER and SciNCL outperformed SciBERT,

suggesting that citation information can be helpful for training scientific lan-

guage models. Still, both models performed worse than PubMedBERT on

our task.

Furthermore, we compared kNN accuracy after t-SNE between different

BERT models (Figure S12), and again obtained the best results with

PubMedBERT (Table S3). The performance of SciNCL here was only 0.1%

lower. We used the same settings for t-SNE as described below, but ran it

with the default number of iterations (750).

Each abstract gets split into a sequence of tokens, and PubMedBERT rep-

resents each token in a 768-dimensional latent space. PubMedBERT’s

maximum input length is 512 tokens and longer abstracts are automatically

truncated at 512 tokens (this corresponds to roughly 300–400 words, and �
98% of all abstracts were shorter than 512 tokens). We are interested in a sin-

gle 768-dimensional representation of each abstract, rather than 512 of them.

For this, we compared several approaches commonly used in the literature:

using the representation of the initial [CLS] token, the trailing [SEP] token,

and averaging the representations of all tokens.10–12 Using the [SEP] token

yielded the highest kNN accuracy in our pilot experiments (Table S2), so we

adopted this approach.

Note that sentence transformers were originally trained to optimize one

specific representation, e.g., SBERT uses the average representation

across all tokens as its sentence-level output, while SPECTER uses the

[CLS] token. For consistency, in Table S2 we report the performance of

all three representations for each model. SBERT implementation (sen-

tence-transformers library) normalizes its output to have norm 1. In

Table S2 we report the accuracy without this normalization (64.5%), as ob-

tained using the transformers library; with normalization, the accuracy

changed by less than 0.1%.
Su et al.55 argued that whitening BERT representation can lead to a strongly

improved performance on some benchmarks. We tried whitening the

PubMedBERT representation, but only observed a decrease in the kNN accu-

racy. For this experiment, we used a test set of 500 labeled papers, and

compared PubMedBERT without any transformations, after centering, and af-

ter whitening, using both Euclidean metric and the cosine metric, following Su

et al.55 We obtained the best results using the raw PubMedBERT representa-

tion (Table S4). Our conclusion is that whitening does not improve the kNN

graph of the PubMedBERT representation.

In the end, our entire collection of abstracts is represented as a

20; 687; 1503768 dense matrix.
TF-IDF representation

In our prior work,18 we used the bag-of-words representation of PubMed ab-

stracts and compared several different normalization approaches. We ob-

tained the highest kNN accuracy using the TF-IDF representation9 with log-

scaling, as defined in the scikit-learn implementation (version 0.24.1):

Xij = ð1 + In CijÞ$
�
1 + In

1+n

1+
P

kðCkj > 0Þ
�

if Cij >0 and Xij = 0 otherwise. Here, n is the total number of abstracts and Cij

are word counts, i.e., the number of times word j occurs in abstract i. In the sci-

kit-learn implementation, the resulting Xij matrix is then row-normalized, so

that each row has l2 norm equal to 1.

This results in a 20; 687;15034; 679; 130 sparse matrix with 0.0023% non-

zero elements, where 4,679,130 is the total number of unique words in all

abstracts.

This matrix is too large to use in t-SNE directly, so for computational conve-

nience we used truncated SVD (sklearn.decomposition.TruncatedSVDwith al-

gorithm = ‘‘arpack’’) to reduce dimensionality to 300, the largest dimensionality

we could obtain given our RAM resources. Note that we did not use SVDwhen

using BERT representations and worked directly with 768-dimensional

representations.

The kNN accuracy values for the TF-IDF and SVD (d = 300) representations

measured on the same 1 million subset as used in the previous section were

61.0% and 54.8%, respectively. After t-SNE, the kNN accuracy was 49.9%.

After our analysis has already been completed, we tried row-normalizing the

SVD representation and observed that this increased the kNN accuracy to

58.7% (and 52.0% after t-SNE); this is equivalent to using cosine distance

instead of Euclidean distance for finding nearest neighbors.

We have also experimented with constructing a TF-IDF representation

based on the PubMedBERT’s tokenizer, instead of the default TF-IDF token-

izer. This reduces the vocabulary size and the dimensionality of the resulting

space from 758,111 to 29,047 (because PubMedBERT’s tokenizer does not

include all unique words as tokens, but instead fragments rare words into

repeating substrings). This barely affected kNN classification accuracy: it

changed from 61.0% to 61.6% in the high-dimensional space and from

49.9% to 50.1% in the 2D space after SVD and t-SNE. Note that the actual

PubMedBERT representation captures many more aspects of the text than

just the presence or absence of specific tokens, so it is unsurprising that the

representation quality was higher there (67.7% in 768D and 60.8% in 2D).
t-SNE

We used the openTSNE (version 0.6.0) implementation56 of t-SNE4 to reduce

dimensionality from 768 (for the BERT representation) or 300 (for the TF-IDF

representation) to d = 2. OpenTSNE is a Python reimplementation of the

FIt-SNE57 algorithm.

We ran t-SNE following the procedure established in our prior work18: using

uniform affinities (on the approximate kNN graph with k = 10) instead of per-

plexity-based affinities, early exaggeration annealing instead of the abrupt

switch of the early exaggeration value, and extended optimization for 2,250 it-

erations instead of the default 750 (250 iterations for the early exaggeration an-

nealing, followed by 2.000 iterations without exaggeration). We did not use any

‘‘late’’ exaggeration after the early exaggeration phase. All other parameters

were kept at default values, including PCA initialization and learning rate set

to n=12, where n is the sample size.
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In our previous work we showed that this visualization approach outper-

formed UMAP (version 0.5.1)17 on PubMed data in TF-IDF representation in

terms of both kNN recall and kNN accuracy.18 We confirmed that the same

was true for the PubMedBERT representation of the 1M subset used in the pre-

vious sections (Figure S13): the UMAP embedding was qualitatively similar to

the t-SNE embedding with exaggeration r = 4, and its kNN recall (2.8%) and

accuracy (49.6%) were lower than those obtained using t-SNE without exag-

geration (12.5% and 60.8%, respectively).

The t-SNE embeddings of a PubMed subset containing 1 million papers

(Figures S12 and S13; Table S3) used the default number of iterations (750).

The embeddings based on the TF-IDF and PubMedBERT representation

showed similar large-scale organization. As t-SNE loss function is unaffected

by rotations and/or sign flips, we flipped the x and/or y coordinates of the TF-

IDF t-SNE embedding to match its orientation to the PubMedBERT t-SNE

embedding. The same was done for the embeddings shown in Figures S12

and S13.

Performance metrics

All kNN-based metrics were based on k = 10 exact nearest neighbors, ob-

tained using the NearestNeighbors and KNeighborsClassifier classes from sci-

kit-learn (version 1.0.2) using algorithm = ‘‘brute’’ and n_jobs = �1.58

To predict each test paper’s label, the kNN classifier takes the majority label

among the paper’s nearest neighbors in the training set. To measure the accu-

racy, the classifier was trained on all labeled papers excluding a random test

set of labeled papers. The test set size was 5,000 for the high-dimensional rep-

resentations and 10,000 for the 2D ones. The chance-level kNN accuracy was

obtained using the DummyClassifier from scikit-learn with strategy = ‘‘strati-

fied,’’ and test set size 10,000.

To predict each test paper’s publication year, we took the average publica-

tion year of the paper’s nearest neighbors in the training set. To measure the

root mean-squared error (RMSE), we used the training set consisting of all pa-

pers excluding a random test set. The test set size was 5,000 for the high-

dimensional representations and 10,000 for the 2D ones. The chance-level

RMSE was calculated by drawing 10 random papers instead of nearest neigh-

bors, for a test set of 5,000 papers.

We define kNN recall as the average size of the overlap between k nearest

neighbors in the high-dimensional space and k nearest neighbors in the low-

dimensional space. We averaged the size of the overlap across a random

set of 10,000 papers for the BERT representation and 5,000 papers for the

TF-IDF representation. The kNN recall value reported in Table 1 for the TF-

IDF representation measures the recall of the original TF-IDF neighbors

(0.7%); the recall of the neighbors from the SVD space (which was used for

t-SNE) was 1.5%.

Isolatedness metric was defined as the average fraction of k nearest neigh-

bors belonging to the same corpus. We used a random subset of 5,000 papers

from each corpus to estimate the isolatedness. The regions from Table 2 were

selected as follows. The HIV/AIDS set contained all papers with ‘‘HIV’’ or

‘‘AIDS’’ words (upper case or lower case) appearing in the abstract. The influ-

enza set contained all papers with the word ‘‘influenza’’ in the abstract (capi-

talized or not). Similarly, the meta-analysis set was obtained using the word

‘‘meta-analysis.’’ The virology and ophthalmology sets correspond to the jour-

nal-based labels (see above).

COVID-related papers

Weconsidered a paper COVID-related if it contained at least one of the following

terms in its abstract: ‘‘covid-19,’’ ‘‘COVID-19,’’ ‘‘Covid-19,’’ ‘‘CoViD-19,’’ ‘‘2019-

nCoV,’’ ‘‘SARS-CoV-2,’’ ‘‘coronavirus disease 2019,’’ ‘‘Coronavirus disease

2019.’’ Our dataset included 132,802 COVID-related papers.

We selected 27 frequent terms contained in COVID-related paper titles to

highlight different subregions of the COVID cluster. The terms were: anti-

body, anxiety, cancer, children, clinical, epidemic, healthcare, immune, impli-

cations, mental, mortality, outbreak, pediatric, pneumonia, population, psy-

chological, respiratory, social, strategies, students, surgery, symptoms,

therapy, transmission, treatment, vaccine, and workers. Papers were as-

signed a keyword if their title contained that term, either capitalized or not.

Paper titles containing more than one term were assigned randomly to one

of them. This resulted in 35,874 COVID-related papers containing one of

those keywords: 27.0% from the total amount of COVID-related papers
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and 45.6% of the COVID-related papers from the main COVID cluster in

the embedding.
Generalized additive models

We used generalized additive models (GAMs) to obtain smooth trends for

several of our analyses across time (Figures 3C, 4C, 5C, and 5D). We used

the LinearGAM (GAM with the Gaussian error distribution and the identity

link function) and the LogisticGAM (GAM with the binomial error distribution

and the logit link function) from the pyGAM Python library (version 0.8.0).59

In all cases, we excluded papers published in 2022, since we only had very

few of them (as we used the 2021 baseline of the PubMed dataset, see above).

Linear GAMs (with n_splines = 6) were used for Figure 3C, and logistic GAMs

(with n_splines = 12) were used for Figures 4C, 5C, and 5D. All GAMs had the

publication year as the only predictor.

In all cases, we used the gridsearch() function to estimate the optimal

smoothing (lambda) parameter using cross-validation. To obtain the smooth

curves shown in the plots, we predicted the dependent value on a grid of pub-

lication years. The confidence intervals were obtained using the confiden-

ce_intervals() function from the same package.

In Figure 3C, the response variable was kNN overlap of a neuroscience pa-

per with the target discipline. For each discipline, the input data were a set of

500 randomly chosen neuroscience papers for each year in 1975–2021. If the

total number of neuroscience papers for a given year was less than 500, all of

them were taken for the analysis. The kNN overlap values of individual papers

were calculated using k = 10 nearest neighbors obtained with the

NearestNeighbors class.

In Figure 4C, the binary response variable was whether a paper contained

‘‘machine learning’’ in its abstract. For each discipline, the input data were

all 2010–2021 papers.

In Figures 5C and 5D, the binary response variable was whether the paper’s

first or last author was female (as inferred by the gender tool, see below). The

input data in all caseswere all paperswith gender information from1960 to 2021.
Gender inference

We extracted authors’ first names from the XML tag ForeName that should in

principle only contain the first name. However, we observed that sometimes it

contained the full name. For that reason, we always took the first word of the

ForeName tag contents (after replacing hyphens with spaces) as the author’s

first name. This reduced some combined first names (such as Eva-Maria or

Jose Maria) to their initial word (Eva; Jose). In many cases, mostly in older pa-

pers, the only available information about the first name was an initial. As it is

not possible to infer gender from an initial, we discarded all extracted first

names with length 1. In the end we obtained 13,429,169 first names of first au-

thors (64.9% of all papers) and 13,189,271 first names of last authors (63.8%),

almost only from 1960 to 2022.

We used the R package gender26 (version 0.6.0) to infer authors’ genders.

This package uses a historical approach that takes into account how naming

practices have changed over time, e.g., Leslie used to be a male name in the

early twentieth century but later has been mainly used as a female name. For

each first/last author, we provided gender with the name and the publication

year, and obtained the inferred gender together with a confidence measure.

The gender package offers inference based on different training databases.

We used the 1930–2012 Social Security Administration data from the USA

(method = ‘‘ssa’’). For the papers published before 1930 we fixed the year to

1930 and for the papers published after 2012, we fixed it to 2012. The SSA

data do not contain information on names that are not common in the USA,

and we only obtained inferred genders for 8,363,116 first authors (62.3% of

available first names) and 8,468,165 last authors (63.1% of available last

names). Out of all inferred genders, 3,543,592 first authors (42.4%) and

2,464,882 last authors (29.1%) were female.

Importantly, our gender inference is only approximate.26 The inference

model has clear limitations, including limited US-based training data and

state-imposed binary genders. Moreover, some first names are inherently

gender-ambiguous. However, the distribution of inferred genders over

biomedical fields and the pattern of changes over the last decades matched

what is known about the gender imbalance in academia, suggesting that in-

ferred genders were sufficiently accurate for our purposes.
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Retracted papers

We obtained PMIDs of papers classified in PubMed as retracted (13,569)

using the PubMed web interface on 19.04.2023. Of those, 11,998 were pre-

sent in our map (the rest were either filtered out in our pipeline or not

included in the 2021 baseline dataset we used). To make sure that re-

tracted papers were not grouping together in the BERT space because

their abstract had been modified to indicate a retraction, we excluded

from consideration all retracted papers containing the words ‘‘retracted,’’

‘‘retraction,’’ ‘‘withdrawn,’’ or ‘‘withdrawal’’ in their abstract (242 papers).

The remaining retracted papers (11,756) had intact original abstracts and

are shown in Figure 6.

There was one small island at the bottom of the map containing retraction

notices (they have independent PubMed entries with separate PMIDs) as

well as corrigenda and errata, which were not filtered out by our length cutoffs.

Many of the 242 retracted papers with post-retraction modified abstracts were

also located there.

We obtained the Retraction Watch database through (https://api.labs.

crossref.org/data/retractionwatch?name@email.org) as a CSV file (41 MB)

on 21.09.2023. It contained 18,786 retracted papers indexed in PubMed. Of

those, 15,666 were present in our map (the rest were either filtered out in

our pipeline or not included in the 2021 baseline dataset we used). 15,103 of

those were intact papers. These 15,103 papers contained all of the 11,998 pa-

pers used above except for 234 papers. This gave 3,572 additional retracted

papers shown in Figure 6 in red.

2023 annual PubMed baseline

While our paper was in revision, we updated the dataset by downloading the

latest annual PubMed snapshot (2023 baseline; files called pub-

med24n0001.xml.gz to 1219.xml.gz, download date: 06.02.2024, 350 GB).

We used this entire dataset, and not only the files containing 2022–2023 pa-

pers, to avoid duplicated entries and to use the latest metadata. This snapshot

included in total 36,555,430 papers. After filtering with our previous criteria, we

were left with 23,389,083 papers.

We extracted the same attributes from the metadata as described above,

with the addition of the first affiliation of the first author. We used this affilia-

tion to assign each paper to a country (Figure S10), by searching the string

for all existing country names in English (taking into account possible

name variations, such as ‘‘United Kingdom’’ and ‘‘UK’’). Consequently, pa-

pers that may have included country names in their original language (e.g.,

‘‘Deutschland’’ instead of ‘‘Germany’’) were not matched to any country.

We noticed that many US affiliations did not explicitly include country

name so we assigned affiliations containing a name of any US state to the

US. This resulted in 19,937,913 papers (85.2%) with an assigned country.

We matched the affiliation countries to our main dataset (2021 baseline) us-

ing PMIDs, which led to 17,404,977 papers (84.1%) with an assigned country

(Figure S8).

We used the same journal-based labels to color the embedding (Figure S9)

and added ‘‘dentistry’’ as an additional label. This resulted in 8,028,583 labeled

papers (34.3%).

Runtimes

Computations were performed on a machine with 384 GB of RAM and Intel

Xeon Gold 6226R processor (16 multi-threaded 2.90 GHz CPU cores) and

on amachine with 512 GB of RAM and Intel Xeon E5-2630 version 4 processor

(10 multi-threaded 2.20 GHz CPU cores). BERT embeddings were calculated

using an NVIDIA TITAN Xp GPU with 12.8 GB of RAM.

Parsing the XML files took 10 h, computing the PubMedBERT embed-

dings took 74 h, running t-SNE took 8 h. More details are given in

Table S5. We used exact nearest neighbors for all kNN-based quality met-

rics, so evaluation of the metrics took longer than computing the embed-

ding. In total, it took around 8 days to compute all the reported metrics

(Table S5).
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100968.
ACKNOWLEDGMENTS

We thank Richard Van Noorden, David Bimler, Ivan Oransky, and Jennifer By-

rne for discussions. This research was funded by the Deutsche Forschungsge-

meinschaft (KO6282/2-1, BE5601/8-1, EXC 2064 ‘‘Machine Learning: New

Perspectives for Science’’ 390727645, and EXC 2181 ‘‘STRUCTURES’’

390900948), by the German Ministry of Education and Research (T€ubingen

AI Center), and by the Hertie Foundation. The authors thank the International

Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting

R.G.-M.

AUTHOR CONTRIBUTIONS

R.G.-M. and D.K. designed the study. R.G.-M. performed the analysis and pre-

pared the figures. L.S. did pilot experiments with language models. B.M.S.

developed the interactive website. R.G.-M. wrote the initial draft of the manu-

script. R.G.-M., P.B., andD.K. discussed the results and edited the paper. D.K.

and P.B. supervised the study.

DECLARATION OF INTERESTS

B.M.S. is Vice President of Information at Nomic AI.

Received: October 31, 2023

Revised: January 16, 2024

Accepted: March 15, 2024

Published: April 9, 2024

REFERENCES

1. Larsen, P.O., and von Ins, M. (2010). The rate of growth in scientific pub-

lication and the decline in coverage provided by science citation index.

Scientometrics 84, 575–603.

2. Bornmann, L., andMutz, R. (2015). Growth rates ofmodern science: A bib-

liometric analysis based on the number of publications and cited refer-

ences. J. Assoc. Inf. Sci. Technol. 66, 2215–2222.

3. Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T.,

Gao, J., and Poon, H. (2021). Domain-specific language model pretraining

for biomedical natural language processing. ACM Trans. Comput.

Healthc. 3, 1–23.

4. van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Mach. Learn. Res. 9.

5. Boyack, K.W., Smith, C., and Klavans, R. (2020). A detailed open access

model of the PubMed literature. Sci. Data 7, 408.

6. Börner, K., Klavans, R., Patek, M., Zoss, A.M., Biberstine, J.R., Light, R.P.,

Larivière, V., and Boyack, K.W. (2012). Design and update of a classifica-

tion system: The UCSD map of science. PLoS One 7, e39464.

7. Nomic, A.I. (2022). Deepscatter. URL: https://github.com/nomic-ai/

deepscatter

8. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, q., and Polosukhin, I. (2017). Attention is all you need. In

Adv. Neural Inf. Process. Syst. 30, I. Guyon, U. Von Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.,

pp. 5998–6008.

9. Sparck Jones, K. (1972). A statistical interpretation of term specificity and

its application in retrieval. J. Doc. 28, 11–21.

10. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-

training of deep bidirectional transformers for language understanding.

In Proceedings of NAACL-HLT, pp. 4171–4186.

11. Reimers, N., and Gurevych, I. (2019). Sentence-BERT: Sentence embed-

dings using siamese BERT-networks. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 3982–3992.

12. Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A pretrained language

model for scientific text. In Proceedings of the 2019 Conference on
Patterns 5, 100968, June 14, 2024 11

https://api.labs.crossref.org/data/retractionwatch?name@email.org
https://api.labs.crossref.org/data/retractionwatch?name@email.org
https://doi.org/10.1016/j.patter.2024.100968
https://doi.org/10.1016/j.patter.2024.100968
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref1
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref1
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref1
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref2
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref2
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref2
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref3
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref3
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref3
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref3
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref4
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref4
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref5
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref5
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref6
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref6
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref6
https://github.com/nomic-ai/deepscatter
https://github.com/nomic-ai/deepscatter
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref8
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref8
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref8
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref8
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref8
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref9
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref9
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref10
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref10
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref10
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref11
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref11
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref11
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref11
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref11
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref12
http://refhub.elsevier.com/S2666-3899(24)00076-X/sref12


ll
OPEN ACCESS Article
Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 3615–3620.

13. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., and Kang, J. (2020).

BioBERT: a pre-trained biomedical language representation model for

biomedical text mining. Bioinformatics 36, 1234–1240.

14. Cohan, A., Feldman, S., Beltagy, I., Downey, D., and Weld, D.S. (2020).

Specter: Document-level representation learning using citation-informed

transformers. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pp. 2270–2282.

15. Gao, T., Yao, X., and Chen, D. (2021). SimCSE: Simple contrastive

learning of sentence embeddings. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing,

pp. 6894–6910.

16. Ostendorff, M., Rethmeier, N., Augenstein, I., Gipp, B., and Rehm, G.

(2022). Neighborhood contrastive learning for scientific document repre-

sentations with citation embeddings. In The 2022 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2022)

(Association for Computational Linguistics), pp. 11670–11688.

17. McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold

Approximation and Projection for dimension reduction. Preprint at arXiv.

https://doi.org/10.48550/arXiv.1802.03426.
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