Understanding Deep Learning

Simon J.D. Prince

October 23, 2023

The most recent version of this document can be found at http://udlbook.com.

Copyright in this work has been licensed exclusively to The MIT Press,
https://mitpress.mit.edu, which will be releasing the final version to the public in 2024. All
inquiries regarding rights should be addressed to the MIT Press, Rights and Permissions
Department.

This work is subject to a Creative Commons CC-BY-NC-ND license.

T would really appreciate help improving this document. No detail too small! Please mail
suggestions, factual inaccuracies, ambiguities, questions, and errata to
udlbookmail@gmail.com.

http://udlbook.com
https://mitpress.mit.edu

This book is dedicated to Blair, Calvert, Coppola, Ellison, Faulkner, Kerpatenko, Morris,
Robinson, Striussler, Wallace, Waymon, Wojnarowicz, and all the others whose work is
even more important and interesting than deep learning.

Contents

Preface ix
Acknowledgements xi
1 Introduction 1
1.1 Supervised learning 1
1.2 Unsupervised learning Lo oL 7
1.3 Reinforcement learning 11
1.4 Ethics e 12
1.5 Structure of book 15
1.6 Other books 15
1.7 How toread thishbook 16
2 Supervised learning 17
2.1 Supervised learning overview Lo 0oL 17
2.2 Linear regression example L Lo 18
2.3 SUMMATY oo e 22
3 Shallow neural networks 25
3.1 Neural network example L. 25
3.2 Universal approximation theorem 29
3.3 Multivariate inputs and outputs Lo 30
3.4 Shallow neural networks: general case 33
3.5 Terminology L 35
3.6 Summary e 36
4 Deep neural networks 41
4.1 Composing neural networks 0oL 41
4.2 From composing networks to deep networks 43
4.3 Deep neural networkso 45
4.4 Matrix notationo 48
4.5 Shallow vs. deep neural networks 49
4.6 SUMIMATY o v v vt s e e e e 52

Draft: please send errata to udlbookmail@gmail.com.

Contents

5 Loss functions

5.1 Maximum likelihood
5.2 Recipe for constructing loss functions
5.3 Example 1: univariate regression
5.4 Example 2: binary classification
5.5 Example 3: multiclass classification
5.6 Multiple outputs
5.7 Cross-entropy loss
5.8 Summary.

6 Fitting models

6.1 Gradient descent L.
6.2 Stochastic gradient descent
6.3 Momentum Lo
6.4 Adam.
6.5 Training algorithm hyperparameters
6.6 Summary

7 Gradients and initialization

7.1 Problem definitionso
7.2 Computing derivatives
7.3 Toyexampleo
7.4 Backpropagation algorithm
7.5 Parameter initialization L.
7.6 Example training code
77 Summary e

8 Measuring performance

8.1 Training a simple model
8.2 Sourcesoferror oL
8.3 Reducingerror. 0.
8.4 Doubledescent 0L
8.5 Choosing hyperparameters
8.6 Summary.

9 Regularization

9.1 Explicit regularization 0oL
9.2 Implicit regularization
9.3 Heuristics to improve performance
9.4 Summary

10 Convolutional networks

10.1 Invariance and equivariance
10.2 Convolutional networks for 1D inputs
10.3 Convolutional networks for 2D inputs

This work is subject to a Creative Commons CC-BY-NC-ND license.

(C) MIT Press.

Contents v
10.4 Downsampling and upsampling L. 171
10.5 Applications 174
10.6 Summaryo e e e e e 179

11 Residual networks 186
11.1 Sequential processing 186
11.2 Residual connections and residual blocks 189
11.3 Exploding gradients in residual networks 192
11.4 Batch normalization e 192
11.5 Common residual architectures 195
11.6 Why do nets with residual connections perform so well? 199
11.7 Summary o 199

12 Transformers 207
12.1 Processing text data oL L Lo 207
12.2 Dot-product self-attention oo 208
12.3 Extensions to dot-product self-attention 213
12.4 Transformers. 215
12.5 Transformers for natural language processing 216
12.6 Encoder model example: BERT 219
12.7 Decoder model example: GPT3 222
12.8 Encoder-decoder model example: machine translation 226
12.9 Transformers for long sequences 227
12.10 Transformers for images 228
12,11 Summary o 232

13 Graph neural networks 240
13.1 What isa graph? L 240
13.2 Graph representation Lo Lo 243
13.3 Graph neural networks, tasks, and loss functions 245
13.4 Graph convolutional networks Lo oL 248
13.5 Example: graph classification o000 251
13.6 Inductive vs. transductive models, 252
13.7 Example: node classification L. 253
13.8 Layers for graph convolutional networks 256
13.9 Edgegraphs L e 260
13.10 SUmmaryo e e e 261

14 Unsupervised learning 268
14.1 Taxonomy of unsupervised learning models 268
14.2 What makes a good generative model? 269
14.3 Quantifying performanceo oL o Lo 271
144 Summaryo 273

15 Generative Adversarial Networks 275

Draft: please send errata to udlbookmail@gmail.com.

vi

Contents

15.1 Discrimination as a signal o000
15.2 Improving stability
15.3 Progressive growing, minibatch discrimination, and truncation
15.4 Conditional generation
15.5 Image translationo oo
15.6 StyleGAN
15.7 Summary
16 Normalizing flows
16.1 1D example
16.2 General case
16.3 Invertible network layers oo Lo
16.4 Multi-scale flowso
16.5 Applications
16.6 Summaryo e
17 Variational autoencoders
17.1 Latent variable models oo
17.2 Nonlinear latent variable model
17.3 Trainingo
17.4 ELBO properties
17.5 Variational approximation oL
17.6 The variational autoencoder L oL
17.7 The reparameterization trick o000
17.8 Applications
17.9 Summaryo
18 Diffusion models
18.1 Overview e e
18.2 Encoder (forward process)o
18.3 Decoder model (reverse process)
184 Training Lo
18.5 Reparameterization of loss function
18.6 Implementation
187 Summary o oL e e
19 Reinforcement learning
19.1 Markov decision processes, returns, and policies
19.2 Expected return Lo o
19.3 Tabular reinforcement learningo
19.4 Fitted Q-learning oL
19.5 Policy gradient methods o oL
19.6 Actor-critic methods
19.7 Offline reinforcement learning oo
19.8 Summary

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Contents vii
20 Why does deep learning work? 401
20.1 The case against deep learning 401
20.2 Factors that influence fitting performance 402
20.3 Properties of loss functions 406
20.4 Factors that determine generalization 410
20.5 Do we need so many parameters? 414
20.6 Do networks have to be deep? 417
20.7 Summary . ..o ... 418
21 Deep learning and ethics 420
21.1 Value alignmento 420
21.2 Imtentional misuse 426
21.3 Other social, ethical, and professional issues 428
214 Casestudyo 430
21.5 The value-free ideal of science 431
21.6 Responsible AT research as a collective action problem 432
21.7 Ways forward 433
21.8 SUmMmMAry e e 434
A Notation 436
B Mathematics 439
B.1 Functions 439
B.2 Binomial coefficients L. 441
B.3 Vector, matrices, and tensors. 442
B.4 Special types of matrix 445
B.5 Matrix calculus 447
C Probability 448
C.1 Random variables and probability distributions 448
C.2 Expectation 452
C.3 Normal probability distribution 456
C4 Sampling L 459
C.5 Distances between probability distributions. 459
Bibliography 462
Index 513

Draft: please send errata to udlbookmail@gmail.com.

Preface

The history of deep learning is unusual in science. The perseverance of a small cabal of
scientists, working over twenty-five years in a seemingly unpromising area, has revolution-
ized a field and dramatically impacted society. Usually, when researchers investigate an
esoteric and apparently impractical corner of science or engineering, it remains just that
— esoteric and impractical. However, this was a notable exception. Despite widespread
skepticism, the systematic efforts of Yoshua Bengio, Geoffrey Hinton, Yann LeCun, and
others eventually paid off.

The title of this book is “Understanding Deep Learning” to distinguish it from vol-
umes that cover coding and other practical aspects. This text is primarily about the
ideas that underlie deep learning. The first part of the book introduces deep learning
models and discusses how to train them, measure their performance, and improve this
performance. The next part considers architectures that are specialized to images, text,
and graph data. These chapters require only introductory linear algebra, calculus, and
probability and should be accessible to any second-year undergraduate in a quantitative
discipline. Subsequent parts of the book tackle generative models and reinforcement
learning. These chapters require more knowledge of probability and calculus and target
more advanced students.

The title is also partly a joke — no-one really understands deep learning at the time of
writing. Modern deep networks learn piecewise linear functions with more regions than
there are atoms in the universe and can be trained with fewer data examples than model
parameters. It is neither obvious that we should be able to fit these functions reliably
nor that they should generalize well to new data. The penultimate chapter addresses
these and other aspects that are not yet fully understood. Regardless, deep learning will
change the world for better or worse. The final chapter discusses Al ethics and concludes
with an appeal for practitioners to consider the moral implications of their work.

Your time is precious, and I have striven to curate and present the material so you
can understand it as efficiently as possible. The main body of each chapter comprises
a succinct description of only the most essential ideas, together with accompanying
illustrations. The appendices review all mathematical prerequisites, and there should be
no need to refer to external material. For readers wishing to delve deeper, each chapter
has associated problems, Python notebooks, and extensive background notes.

Writing a book is a lonely, grinding, multiple-year process and is only worthwhile if
the volume is widely adopted. If you enjoy reading this or have suggestions for improving
it, please contact me via the accompanying website. I would love to hear your thoughts,
which will inform and motivate subsequent editions.

Draft: please send errata to udlbookmail@gmail.com.

Acknowledgments

Writing this book would not have been possible without the generous help and advice of these
individuals: Kathryn Hume, Kevin Murphy, Christopher Bishop, Peng Xu, Yann Dubois, Justin
Domke, Chris Fletcher, Yanshuai Cao, Wendy Tay, Corey Toler-Franklin, Dmytro Mishkin, Guy
McCusker, Daniel Worrall, Paul Mcllroy, Roy Amoyal, Austin Anderson, Romero Barata de
Morais, Gabriel Harrison, Peter Ball, Alf Muir, David Bryson, Vedika Parulkar, Patryk Lietzau,
Jessica Nicholson, Alexa Huxley, Oisin Mac Aodha, Giuseppe Castiglione, Josh Akylbekov, Alex
Gougoulaki, Joshua Omilabu, Alister Guenther, Joe Goodier, Logan Wade, Joshua Guenther,
Kylan Tobin, Benedict Ellett, Jad Araj, Andrew Glennerster, Giorgos Sfikas, Diya Vibhakar,
Sam Mansat-Bhattacharyya, Ben Ross, Ivor Simpson, Gaurang Aggarwal, Shakeel Sheikh, Ja-
cob Horton, Felix Rammell, Sasha Luccioni, Akshil Patel, Alessandro Gentilini, Kevin Mercier,
Krzysztof Lichocki, Chuck Krapf, Brian Ha, Chris Kang, Leonardo Viotti, Kai Li, Himan Ab-
dollahpouri, Ari Pakman, Giuseppe Antonio Di Luna, Dan Oneata, Conrad Whiteley, Joseph
Santarcangelo, Brad Shook, Gabriel Brostow, Lei He, Ali Satvaty, Romain Sabathé, Qiang
Zhou, Prasanna Vigneswaran, Siqi Zheng, Stephan Grein, Jonas Klesen, Giovanni Stilo, Huang
Bokai, Bernhard Pfahringer, Joseph Santarcangelo, Kevin McGuinness, Qiang Sun, Zakaria
Lotfi, Yifei Lin, Sylvain Bouix, Alex Pitt, Stephane Chretien, Robin Liu, Bian Li, Adam Jones,
Marcin Swierkot, Tommy Lofstedt, Eugen Hotaj, Fernando Flores-Mangas, Tony Polichroniadis,
Pietro Monticone, Rohan Deepak Ajwani, Menashe Yarden Einy, Robert Gevorgyan, Thilo
Stadelmann, Gui JieMiao, Botao Zhu, Mohamed Elabbas, Satya Krishna Gorti, James El-
der, Helio Perroni Filho, Xiaochao Qu, Jaekang Shin, Joshua Evans, Robert Dobson, Shibo
Wang, Edoardo Zorzi, Joseph Santarcangelo, Stanistaw Jastrzebski, Pieris Kalligeros, Matt He-
witt, Zvika Haramaty, Ted Mavroidis, Nikolaj Kuntner, Amir Yorav, Masoud Mokhtari, Xavier
Gabaix, Marco Garosi, Vincent Schonbach, Avishek Mondal, Victor S.C. Lui, Sumit Bhatia,
Julian Asilis, Hengchao Chen, Siavash Khallaghi, Csaba Szepesvari, Mike Singer, Mykhailo
Shvets, Abdalla Ibrahim, Stefan Hell, Ron Raphaeli, Diogo Tavares, Aristotelis Siozopoulos,
Jianrui Wu, Jannik Miinz, Penn Mackintosh, Shawn Hoareau, Qianang Zhou, Emma Li, and
Charlie Groves.

I’'m particularly grateful to Daniyar Turmukhambetov, Amedeo Buonanno, Andrea Panizza,
Mark Hudson, and Bernhard Pfahringer, who provided detailed comments on multiple chapters
of the book. I’d like to especially thank Andrew Fitzgibbon, Konstantinos Derpanis, and Tyler
Mills, who read the whole book and whose enthusiasm helped me complete this project. I'd
also like to thank Neill Campbell and Ozgiir Simsgek, who hosted me at the University of Bath,
where I taught a course based on this material for the first time. Finally, I'm extremely grateful
to my editor Elizabeth Swayze for her frank advice throughout this process.

Chapter 12 (transformers) and chapter 17 (variational autoencoders) were first published
as blogs for Borealis AI, and adapted versions are reproduced with permission of Royal Bank
of Canada along with Borealis Al. I am grateful for their support in this endeavor. Chapter 16
(normalizing flows) is loosely based on the review article by Kobyzev et al. (2020), on which

Draft: please send errata to udlbookmail@gmail.com.

xii Contents

I was a co-author. I was very fortunate to be able to collaborate on Chapter 21 with Travis
LaCroix from Dalhousie University, who was both easy and fun to work with, and who did the
lion’s share of the work.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.1

Chapter 1

Introduction

Artificial intelligence, or Al is concerned with building systems that simulate intelligent
behavior. It encompasses a wide range of approaches, including those based on logic,
search, and probabilistic reasoning. Machine learning is a subset of Al that learns to
make decisions by fitting mathematical models to observed data. This area has seen
explosive growth and is now (incorrectly) almost synonymous with the term Al

A deep neural network is a type of machine learning model, and when it is fitted
to data, this is referred to as deep learning. At the time of writing, deep networks are
the most powerful and practical machine learning models and are often encountered
in day-to-day life. It is commonplace to translate text from another language using a
natural language processing algorithm, to search the internet for images of a particular
object using a computer vision system, or to converse with a digital assistant via a speech
recognition interface. All of these applications are powered by deep learning.

As the title suggests, this book aims to help a reader new to this field understand
the principles behind deep learning. The book is neither terribly theoretical (there are
no proofs) nor extremely practical (there is almost no code). The goal is to explain the
underlying ideas; after consuming this volume, the reader will be able to apply deep
learning to novel situations where there is no existing recipe for success.

Machine learning methods can coarsely be divided into three areas: supervised, unsu-
pervised, and reinforcement learning. At the time of writing, the cutting-edge methods
in all three areas rely on deep learning (figure 1.1). This introductory chapter describes
these three areas at a high level, and this taxonomy is also loosely reflected in the book’s
organization. Whether we like it or not, deep learning is poised to change our world,
and this change will not all be positive. Hence, this chapter also contains brief primer
on Al ethics. We conclude with advice on how to make the most of this book.

Supervised learning
Supervised learning models define a mapping from input data to an output prediction.

In the following sections, we discuss the inputs, the outputs, the model itself, and what
is meant by “learning” a model.

Draft: please send errata to udlbookmail@gmail.com.

1.11

1.1.2

2 1 Introduction

Figure 1.1 Machine learning is an area (" Artificial intelligence N
of artificial intelligence that fits math-
ematical models to observed data. It
can coarsely be divided into supervised
learning, unsupervised learning, and re-

inforcement learning. Deep neural net- Supervised Unsupervised '\ ('Reinforcement
works contribute to each of these areas. learning learning learning

Deep learning

Regression and classification problems

Figure 1.2 depicts several regression and classification problems. In each case, there is a
meaningful real-world input (a sentence, a sound file, an image, etc.), and this is encoded
as a vector of numbers. This vector forms the model input. The model maps the input to
an output vector which is then “translated” back to a meaningful real-world prediction.
For now, we focus on the inputs and outputs and treat the model as a black box that
ingests a vector of numbers and returns another vector of numbers.

The model in figure 1.2a predicts the price of a house based on input characteristics
such as the square footage and the number of bedrooms. This is a regression problem
because the model returns a continuous number (rather than a category assignment). In
contrast, the model in 1.2b takes the chemical structure of a molecule as an input and
predicts both the melting and boiling points. This is a multivariate regression problem
since it predicts more than one number.

The model in figure 1.2c receives a text string containing a restaurant review as input
and predicts whether the review is positive or negative. This is a binary classification
problem because the model attempts to assign the input to one of two categories. The
output vector contains the probabilities that the input belongs to each category. Fig-
ures 1.2d and 1.2e depict multiclass classification problems. Here, the model assigns the
input to one of N > 2 categories. In the first case, the input is an audio file, and the
model predicts which genre of music it contains. In the second case, the input is an
image, and the model predicts which object it contains. In each case, the model returns
a vector of size N that contains the probabilities of the N categories.

Inputs

The input data in figure 1.2 varies widely. In the house pricing example, the input is a
fixed-length vector containing values that characterize the property. This is an example
of tabular data because it has no internal structure; if we change the order of the inputs
and build a new model, then we expect the model prediction to remain the same.
Conversely, the input in the restaurant review example is a body of text. This may
be of variable length depending on the number of words in the review, and here input

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.1

Supervised learning

Real world input

6000 square feet,
4 bedrooms,
previously sold for
$235K in 2005,

1 parking spot.

“The steak was terrible,
the salad was rotten, and
the soup tasted like socks”

Model input

Model

Model output

Real world output

:

Deep learning
model

—> [340—>

Predicted price
is $340k

:

Deep learning
model

Freezing point

8672
8194
9804
8634
8672

:

Deep learning
model

125
12054
1253
6178

L, |128

4447

:

Deep learning
model

124
140
156

142
157

:

Deep learning
model

12,0]_' is -12.9°C
56.4 Boiling point
is 56.4°C
’[(),98]' Negative
0.52 Electronica
— —
0.89 Bicycle
—> —>

Figure 1.2 Regression and classification problems. a) This regression model takes
a vector of numbers that characterize a property and predicts its price. b) This
multivariate regression model takes the structure of a chemical molecule and
predicts its melting and boiling points. ¢) This binary classification model takes a
restaurant review and classifies it as either positive or negative. d) This multiclass
classification problem assigns a snippet of audio to one of N genres. e) A second
multiclass classification problem in which the model classifies an image according
to which of N possible objects it might contain.

Draft: please send errata to udlbookmail@gmail.com.

1.1.3

4 1 Introduction

200 S
° e ©
o %0 o
Err———""3"= ® Q@ @
A | | |
Aisgewof ;:rltj > [10— - | ® %% i L5130 Hglg:w?:gof child
y % e o® : is cms
I)|e |
® i
1
[}
[}
[}
0 |
0 10 20
Age in years

Figure 1.3 Machine learning model. The model represents a family of relationships
that relate the input (age of child) to the output (height of child). The particular
relationship is chosen using training data, which consists of input/output pairs
(orange points). When we train the model, we search through the possible re-
lationships for one that describes the data well. Here, the trained model is the
cyan curve and can be used to compute the height for any age.

order is important; my wife ate the chicken is not the same as the chicken ate my wife.
The text must be encoded into numerical form before passing it to the model. Here, we
use a fixed vocabulary of size 10,000 and simply concatenate the word indices.

For the music classification example, the input vector might be of fixed size (perhaps
a 10-second clip) but is very high-dimensional. Digital audio is usually sampled at 44.1
kHz and represented by 16-bit integers, so a ten-second clip consists of 441,000 integers.
Clearly, supervised learning models will have to be able to process sizeable inputs. The
input in the image classification example (which consists of the concatenated RGB values
at every pixel) is also enormous. Moreover, its structure is naturally two-dimensional;
two pixels above and below one another are closely related, even if they are not adjacent
in the input vector.

Finally, consider the input for the model that predicts the melting and boiling points
of the molecule. A molecule may contain varying numbers of atoms that can be connected
in different ways. In this case, the model must ingest both the geometric structure of
the molecule and the constituent atoms to the model.

Machine learning models
Until now, we have treated the machine learning model as a black box that takes an input

vector and returns an output vector. But what exactly is in this black box? Consider a
model to predict the height of a child from their age (figure 1.3). The machine learning

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.1.4

1.1.5

1.1 Supervised learning 5

model is a mathematical equation that describes how the average height varies as a
function of age (cyan curve in figure 1.3). When we run the age through this equation,
it returns the height. For example, if the age is 10 years, then we predict that the height
will be 139 cm.

More precisely, the model represents a family of equations mapping the input to
the output (i.e., a family of different cyan curves). The particular equation (curve) is
chosen using training data (examples of input/output pairs). In figure 1.3, these pairs
are represented by the orange points, and we can see that the model (cyan line) describes
these data reasonably. When we talk about training or fitting a model, we mean that we
search through the family of possible equations (possible cyan curves) relating input to
output to find the one that describes the training data most accurately.

It follows that the models in figure 1.2 require labeled input/output pairs for training.
For example, the music classification model would require a large number of audio clips
where a human expert had identified the genre of each. These input/output pairs take
the role of a teacher or supervisor for the training process, and this gives rise to the term
supervised learning.

Deep neural networks

This book concerns deep neural networks, which are a particularly useful type of machine
learning model. They are equations that can represent an extremely broad family of
relationships between input and output, and where it is particularly easy to search
through this family to find the relationship that describes the training data.

Deep neural networks can process inputs that are very large, of variable length,
and contain various kinds of internal structures. They can output single real numbers
(regression), multiple numbers (multivariate regression), or probabilities over two or more
classes (binary and multiclass classification, respectively). As we shall see in the next
section, their outputs may also be very large, of variable length, and contain internal
structure. It is probably hard to imagine equations with these properties, and the reader
should endeavor to suspend disbelief for now.

Structured outputs

Figure 1.4a depicts a multivariate binary classification model for semantic segmentation.
Here, every pixel of an input image is assigned a binary label that indicates whether it
belongs to a cow or the background. Figure 1.4b shows a multivariate regression model
where the input is an image of a street scene and the output is the depth at each pixel.
In both cases, the output is high-dimensional and structured. However, this structure is
closely tied to the input, and this can be exploited; if a pixel is labeled as “cow,” then a
neighbor with a similar RGB value probably has the same label.

Figures 1.4c—e depict three models where the output has a complex structure that is
not so closely tied to the input. Figure 1.4c shows a model where the input is an audio
file and the output is the transcribed words from that file. Figure 1.4d is a translation

Draft: please send errata to udlbookmail@gmail.com.

1 Introduction

Real world input

Model input

“Skill without imagination
is craftsmanship and gives us
many useful objects such as

wickerwork picnic baskets.

Imagination without skill

gives us modern art.”

“Teddy bears mixing
sparkling chemicals as
mad scientists, in
a steampunk style.”

—>

[183]
204
231
1850
204
232

5178
16054
10053

178

8763

7800
9853
4520

—> | 4596

987

8300
532
7676
7898
883

Model

Model output

Real world output

&

Deep learning
model

&

Deep learning
model

0.0017
0.002

0.314
0.310

&

Deep learning
model

[4364]
2318

4998 —>
3833

“l draw a jackal-headed
woman in the sand,
Sing of a lover’s fate

sealed by jealous hate”

&

Deep learning
model

[6003]
3689
4432
6003 [—>
2149

“L’habileté sans I'imagination

est de I'artisanat et nous
donne de nombreux objets
utiles tels que des paniers

de pique-nique en osier.
Limagination sans habileté
nous donne I'art moderne.”

>

RN NN NN

Deep learning
model

Figure 1.4 Supervised learning tasks with structured outputs. a) This semantic
segmentation model maps an RGB image to a binary image indicating whether
each pixel belongs to the background or a cow (adapted from Noh et al., 2015).
b) This monocular depth estimation model maps an RGB image to an output
image where each pixel represents the depth (adapted from Cordts et al., 2016).
¢) This audio transcription model maps an audio sample to a transcription of
the spoken words in the audio. d) This translation model maps an English text
string to its French translation. e¢) This image synthesis model maps a caption to
an image (example from https://openai.com/dall-e-2/). In each case, the output
has a complex internal structure or grammar. In some cases, many outputs are
compatible with the input.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.2

1.2.1

1.2 Unsupervised learning 7

model in which the input is a body of text in English, and the output contains the French
translation. Figure 1.4e depicts a very challenging task in which the input is descriptive
text, and the model must produce an image that matches this description.

In principle, the latter three tasks can be tackled in the standard supervised learning
framework, but they are more difficult for two reasons. First, the output may genuinely
be ambiguous; there are multiple valid translations from an English sentence to a French
one and multiple images that are compatible with any caption. Second, the output
contains considerable structure; not all strings of words make valid English and French
sentences, and not all collections of RGB values make plausible images. In addition to
learning the mapping, we also have to respect the “grammar” of the output.

Fortunately, this “grammar” can be learned without the need for output labels. For
example, we can learn how to form valid English sentences by learning the statistics of a
large corpus of text data. This provides a connection with the next section of the book,
which considers unsupervised learning models.

Unsupervised learning

Constructing a model from input data without corresponding output labels is termed
unsupervised learning; the absence of output labels means there can be no “supervision.”
Rather than learning a mapping from input to output, the goal is to describe or under-
stand the structure of the data. As was the case for supervised learning, the data may
have very different characteristics; it may be discrete or continuous, low-dimensional or
high-dimensional, and of constant or variable length.

Generative models

This book focuses on generative unsupervised models, which learn to synthesize new
data examples that are statistically indistinguishable from the training data. Some
generative models explicitly describe the probability distribution over the input data and
here new examples are generated by sampling from this distribution. Others merely learn
a mechanism to generate new examples without explicitly describing their distribution.

State-of-the-art generative models can synthesize examples that are extremely plau-
sible but distinct from the training examples. They have been particularly successful
at generating images (figure 1.5) and text (figure 1.6). They can also synthesize data
under the constraint that some outputs are predetermined (termed conditional genera-
tion). Examples include image inpainting (figure 1.7) and text completion (figure 1.8).
Indeed, modern generative models for text are so powerful that they can appear intel-
ligent. Given a body of text followed by a question, the model can often “fill in” the
missing answer by generating the most likely completion of the document. However, in
reality, the model only knows about the statistics of language and does not understand
the significance of its answers.

Draft: please send errata to udlbookmail@gmail.com.

1 Introduction

Figure 1.5 Generative models for images. Left: two images were generated from
a model trained on pictures of cats. These are not real cats, but samples from a
probability model. Right: two images generated from a model trained on images
of buildings. Adapted from Karras et al. (2020Db).

The moon had risen by the time I reached the edge of the forest, and the light that filtered through the
trees was silver and cold. I shivered, though I was not cold, and quickened my pace. I had never been
so far from the village before, and 1 was not sure what to expect. I had been walking for hours, and I
was tired and hungry. I had left in such a hurry that I had not thought to pack any food, and I had
not thought to bring a weapon. I was unarmed and alone in a strange place, and I did not know what

I was doing.

I had been walking for so long that I had lost all sense of time, and I had no idea how far I had come.
I only knew that I had to keep going. I had to find her. I was getting close. I could feel it. She was
nearby, and she was in trouble. I had to find her and help her, before it was too late.

Figure 1.6 Short story synthesized from a generative model of text data. The
model describes a probability distribution that assigns a probability to every
output string. Sampling from the model creates strings that follow the statistics
of the training data (here, short stories) but have never been seen before.

Figure 1.7 Inpainting. In the original image (left), the boy is obscured by metal
cables. These undesirable regions (center) are removed and the generative model
synthesizes a new image (right) under the constraint that the remaining pixels
must stay the same. Adapted from Saharia et al. (2022a).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.2 Unsupervised learning 9

I was a little nervous before my first lecture at the University of Bath. It seemed like there were
hundreds of students and they looked intimidating. I stepped up to the lectern and was about to speak
when something bizarre happened.

Suddenly, the room was filled with a deafening noise, like a giant roar. It was so loud that I
couldn’t hear anything else and I had to cover my ears. I could see the students looking around, con-
fused and frightened. Then, as quickly as it had started, the noise stopped and the room was silent again.
I stood there for a few moments, trying to make sense of what had just happened. Then I realized that
the students were all staring at me, waiting for me to say something. I tried to think of something witty
or clever to say, but my mind was blank. So I just said, “Well, that was strange,” and then I started my

lecture.

Figure 1.8 Conditional text synthesis. Given an initial body of text (in black),
generative models of text can continue the string plausibly by synthesizing the
“missing” remaining part of the string. Generated by GPT3 (Brown et al., 2020).

Figure 1.9 Variation of the human face. The human face contains roughly 42
muscles, so it’s possible to describe most of the variation in images of the same
person in the same lighting with just 42 numbers. In general, datasets of images,
music, and text can be described by a relatively small number of underlying
variables although it is typically more difficult to tie these to particular physical
mechanisms. Images from Dynamic FACES database (Holland et al., 2019).

1.2.2 Latent variables

Some (but not all) generative models exploit the observation that data can be lower
dimensional than the raw number of observed variables suggests. For example, the num-
ber of valid and meaningful English sentences is considerably smaller than the number
of strings created by drawing words at random. Similarly, real-world images are a tiny
subset of the images that can be created by drawing random RGB values for every pixel.
This is because images are generated by physical processes (see figure 1.9).

This leads to the idea that we can describe each data example using a smaller number
of underlying latent variables. Here, the role of deep learning is to describe the mapping
between these latent variables and the data. The latent variables typically have a simple

Draft: please send errata to udlbookmail@gmail.com.

10 1 Introduction

Normal Latent Model Model output Real world output

distribution variables [110]
109
05 110
o1 108
1' 109

2 ,

> 06 > > 1110 >
: | 110
: Deep learning 110
model 109

Figure 1.10 Latent variables. Many generative models use a deep learning model
to describe the relationship between a low-dimensional “latent” variable and the
observed high-dimensional data. The latent variables have a simple probability
distribution by design. Hence, new examples can be generated by sampling from
the simple distribution over the latent variables and then using the deep learning
model to map the sample to the observed data space.

Figure 1.11 Tmage interpolation. In each row the left and right images are real
and the three images in between represent a sequence of interpolations created
by a generative model. The generative models that underpin these interpolations
have learned that all images can be created by a set of underlying latent variables.
By finding these variables for the two real images, interpolating their values, and
then using these intermediate variables to create new images, we can generate
intermediate results that are both visually plausible and mix the characteristics
of the two original images. Top row adapted from Sauer et al. (2022). Bottom
row adapted from Ramesh et al. (2022).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.2.3

1.3

1.3 Reinforcement learning 11

Figure 1.12 Multiple images generated from the caption “A teddy bear on a
skateboard in Times Square.” Generated by DALL-E-2 (Ramesh et al., 2022).

probability distribution by design. By sampling from this distribution and passing the
result through the deep learning model, we can create new samples (figure 1.10).

These models lead to new methods for manipulating real data. For example, consider
finding the latent variables that underpin two real examples. We can interpolate between
these examples by interpolating between their latent representations and mapping the
intermediate positions back into the data space (figure 1.11).

Connecting supervised and unsupervised learning

Generative models with latent variables can also benefit supervised learning models
where the outputs have structure (figure 1.4). For example, consider learning to predict
the images corresponding to a caption. Rather than directly map the text input to an
image, we can learn a relation between latent variables that explain the text and the
latent variables that explain the image.

This has three advantages. First, we may need fewer text/image pairs to learn this
mapping now that the inputs and outputs are lower dimensional. Second, we are more
likely to generate a plausible-looking image; any sensible values of the latent variables
should produce something that looks like a plausible example. Third, if we introduce
randomness to either the mapping between the two sets of latent variables or the mapping
from the latent variables to the image, then we can generate multiple images that are all
described well by the caption (figure 1.12).

Reinforcement learning

The final area of machine learning is reinforcement learning. This paradigm introduces
the idea of an agent which lives in a world and can perform certain actions at each time
step. The actions change the state of the system but not necessarily in a deterministic
way. Taking an action can also produce rewards, and the goal of reinforcement learning

Draft: please send errata to udlbookmail@gmail.com.

1.3.1

1.4

12 1 Introduction

is for the agent to learn to choose actions that lead to high rewards on average.

One complication is that the reward may occur some time after the action is taken,
so associating a reward with an action is not straightforward. This is known as the
temporal credit assignment problem. As the agent learns, it must trade off exploration
and exploitation of what it already knows; perhaps the agent has already learned how to
receive modest rewards; should it follow this strategy (exploit what it knows), or should
it try different actions to see if it can improve (explore other opportunities)?

Two examples

Consider teaching a humanoid robot to locomote. The robot can perform a limited
number of actions at a given time (moving various joints), and these change the state of
the world (its pose). We might reward the robot for reaching checkpoints in an obstacle
course. To reach each checkpoint, it must perform many actions, and it’s unclear which
ones contributed to the reward when it is received and which were irrelevant. This is an
example of the temporal credit assignment problem.

A second example is learning to play chess. Again, the agent has a set of valid actions
(chess moves) at any given time. However, these actions change the state of the system
in a non-deterministic way; for any choice of action, the opposing player might respond
with many different moves. Here, we might set up a reward structure based on capturing
pieces or just have a single reward at the end of the game for winning. In the latter case,
the temporal credit assignment problem is extreme; the system must learn which of the
many moves it made were instrumental to success or failure.

The exploration-exploitation trade-off is also apparent in these two examples. The
robot may have discovered that it can make progress by lying on its side and pushing
with one leg. This strategy will move the robot and yields rewards, but much more slowly
than the optimal solution: to balance on its legs and walk. So, it faces a choice between
exploiting what it already knows (how to slide along the floor awkwardly) and exploring
the space of actions (which might result in much faster locomotion). Similarly, in the
chess example, the agent may learn a reasonable sequence of opening moves. Should it
exploit this knowledge or explore different opening sequences?

It is perhaps not obvious how deep learning fits into the reinforcement learning frame-
work. There are several possible approaches, but one technique is to use deep networks
to build a mapping from the observed world state to an action. This is known as a
policy network. In the robot example, the policy network would learn a mapping from
its sensor measurements to joint movements. In the chess example, the network would
learn a mapping from the current state of the board to the choice of move (figure 1.13).

Ethics

It would be irresponsible to write this book without discussing the ethical implications
of artificial intelligence. This potent technology will change the world to at least the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.4 Ethics 13

Model input Model Model output Action
-
0 0.89 Ne5
0
g E— —
5 Deep learning
: model
O

Figure 1.13 Policy networks for reinforcement learning. One way to incorporate
deep neural networks into reinforcement learning is to use them to define a map-
ping from the state (here position on chessboard) to the actions (possible moves).
This mapping is known as a policy. Adapted from Pablok (2017).

same extent as electricity, the internal combustion engine, the transistor, or the internet.
The potential benefits in healthcare, design, entertainment, transport, education, and
almost every area of commerce are enormous. However, scientists and engineers are often
unrealistically optimistic about the outcomes of their work, and the potential for harm
is just as great. The following paragraphs highlight five concerns.

Bias and fairness: If we train a system to predict salary levels for individuals based
on historical data, then this system will reproduce historical biases; for example, it will
probably predict that women should be paid less than men. Several such cases have
already become international news stories: an Al system for super-resolving face images
made non-white people look more white; a system for generating images produced only
pictures of men when asked to synthesize pictures of lawyers. Careless application of
algorithmic decision-making using Al has the potential to entrench or aggravate existing
biases. See Binns (2018) for further discussion.

Explainability: Deep learning systems make decisions, but we do not usually know
exactly how or based on what information. They may contain billions of parameters,
and there is no way we can understand how they work based on examination. This has
led to the sub-field of explainable AI. One moderately successful area is producing local
explanations; we cannot explain the entire system, but we can produce an interpretable
description of why a particular decision was made. However, it remains unknown whether
it is possible to build complex decision-making systems that are fully transparent to their
users or even their creators. See Grennan et al. (2022) for further information.

Weaponizing Al: All significant technologies have been applied directly or indirectly
toward war. Sadly, violent conflict seems to be an inevitable feature of human behavior.
Al is arguably the most powerful technology ever built and will doubtless be deployed
extensively in a military context. Indeed, this is already happening (Heikkild, 2022).

Draft: please send errata to udlbookmail@gmail.com.

14 1 Introduction

Concentrating power: It is not from a benevolent interest in improving the lot of the
human race that the world’s most powerful companies are investing heavily in artifi-
cial intelligence. They know that these technologies will allow them to reap enormous
profits. Like any advanced technology, deep learning is likely to concentrate power in
the hands of the few organizations that control it. Automating jobs that are currently
done by humans will change the economic environment and disproportionately affect the
livelihoods of lower-paid workers with fewer skills. Optimists argue similar disruptions
happened during the industrial revolution and resulted in shorter working hours. The
truth is that we simply do not know what effects the large-scale adoption of Al will have
on society (see David, 2015).

Existential risk: The major existential risks to the human race all result from tech-
nology. Climate change has been driven by industrialization. Nuclear weapons derive
from the study of physics. Pandemics are more probable and spread faster because in-
novations in transport, agriculture, and construction have allowed a larger, denser, and
more interconnected population. Artificial intelligence brings new existential risks. We
should be very cautious about building systems that are more capable and extensible
than human beings. In the most optimistic case, it will put vast power in the hands
of the owners. In the most pessimistic case, we will be unable to control it or even
understand its motives (see Tegmark, 2018).

This list is far from exhaustive. Al could also enable surveillance, disinformation,
violations of privacy, fraud, and manipulation of financial markets, and the energy re-
quired to train Al systems contributes to climate change. Moreover, these concerns are
not speculative; there are already many examples of ethically dubious applications of
AT (consult Dao, 2021, for a partial list). In addition, the recent history of the inter-
net has shown how new technology can cause harm in unexpected ways. The online
community of the eighties and early nineties could hardly have predicted the prolifera-
tion of fake news, spam, online harassment, fraud, cyberbullying, incel culture, political
manipulation, doxxing, online radicalization, and revenge porn.

Everyone studying or researching (or writing books about) AT should contemplate
to what degree scientists are accountable for the uses of their technology. We should
consider that capitalism primarily drives the development of AT and that legal advances
and deployment for social good are likely to lag significantly behind. We should reflect
on whether it’s possible, as scientists and engineers, to control progress in this field and
to reduce the potential for harm. We should consider what kind of organizations we
are prepared to work for. How serious are they in their commitment to reducing the
potential harms of AI? Are they simply “ethics-washing” to reduce reputational risk, or
do they actually implement mechanisms to halt ethically suspect projects?

All readers are encouraged to investigate these issues further. The online course
at https://ethics-of-ai.mooc.fi/ is a useful introductory resource. If you are a professor
teaching from this book, you are encouraged to raise these issues with your students. If
you are a student taking a course where this is not done, then lobby your professor to
make this happen. If you are deploying or researching Al in a corporate environment,
you are encouraged to scrutinize your employer’s values and to help change them (or
leave) if they are wanting.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

https://ethics-of-ai.mooc.fi/

1.5

1.6

1.5 Structure of book 15

Structure of book

The structure of the book follows the structure of this introduction. Chapters 2-9 walk
through the supervised learning pipeline. We describe shallow and deep neural networks
and discuss how to train them and measure and improve their performance. Chap-
ters 10-13 describe common architectural variations of deep neural networks, including
convolutional networks, residual connections, and transformers. These architectures are
used across supervised, unsupervised, and reinforcement learning.

Chapters 14-18 tackle unsupervised learning using deep neural networks. We devote
a chapter each to four modern deep generative models: generative adversarial networks,
variational autoencoders, normalizing flows, and diffusion models. Chapter 19 is a brief
introduction to deep reinforcement learning. This is a topic that easily justifies its own
book, so the treatment is necessarily superficial. However, this treatment is intended to
be a good starting point for readers unfamiliar with this area.

Despite the title of this book, some aspects of deep learning remain poorly under-
stood. Chapter 20 poses some fundamental questions. Why are deep networks so easy
to train? Why do they generalize so well? Why do they need so many parameters? Do
they need to be deep? Along the way, we explore unexpected phenomena such as the
structure of the loss function, double descent, grokking, and lottery tickets. The book
concludes with chapter 21, which discusses ethics and deep learning.

Other books

This book is self-contained but is limited to coverage of deep learning. It is intended to
be the spiritual successor to Deep Learning (Goodfellow et al., 2016) which is a fantastic
resource but does not cover recent advances. For a broader look at machine learning, the
most up-to-date and encyclopedic resource is Probabilistic Machine Learning (Murphy,
2022, 2023). However, Pattern Recognition and Machine Learning (Bishop, 2006) is still
an excellent and relevant book.

If you enjoy this book, then my previous volume, Computer Vision: Models, Learning,
and Inference (Prince, 2012), is still worth reading. Some parts have dated badly, but it
contains a thorough introduction to probability, including Bayesian methods, and good
introductory coverage of latent variable models, geometry for computer vision, Gaussian
processes, and graphical models. It uses identical notation to this book and can be found
online. A detailed treatment of graphical models can be found in Probabilistic Graphical
Models: Principles and Techniques (Koller & Friedman, 2009), and Gaussian processes
are covered by Gaussian Processes for Machine Learning (Williams & Rasmussen, 2006).

For background mathematics, consult Mathematics for Machine Learning (Deisen-
roth et al., 2020). For a more coding-oriented approach, consult Dive into Deep Learning
(Zhang et al., 2023). The best overview for computer vision is Szeliski (2022), and there
is also the impending book Foundations of Computer Vision (Torralba et al., 2024).
A good starting point to learn about graph neural networks is Graph Representation
Learning (Hamilton, 2020). The definitive work on reinforcement learning is Reinforce-

Draft: please send errata to udlbookmail@gmail.com.

Appendix A
Notation

Notebook 1.1
Background
mathematics

1.7

16 1 Introduction

ment Learning: An Introduction (Sutton & Barto, 2018). A good initial resource is
Foundations of Deep Reinforcement Learning (Graesser & Keng, 2019).

How to read this book

Most remaining chapters in this book contain a main body of text, a notes section, and
a set of problems. The main body of the text is intended to be self-contained and can be
read without recourse to the other parts of the chapter. As much as possible, background
mathematics is incorporated into the main body of the text. However, for larger topics
that would be a distraction to the main thread of the argument, the background material
is appendicized, and a reference is provided in the margin. Most notation in this book is
standard. However, some conventions are less widely used, and the reader is encouraged
to consult appendix A before proceeding.

The main body of text includes many novel illustrations and visualizations of deep
learning models and results. I've worked hard to provide new explanations of existing
ideas rather than merely curate the work of others. Deep learning is a new field, and
sometimes phenomena are poorly understood. I try to make it clear where this is the
case and when my explanations should be treated with caution.

References are included in the main body of the chapter only where results are de-
picted. Instead, they can be found in the notes section at the end of the chapter. I do
not generally respect historical precedent in the main text; if an ancestor of a current
technique is no longer useful, then I will not mention it. However, the historical develop-
ment of the field is described in the notes section, and hopefully, credit is fairly assigned.
The notes are organized into paragraphs and provide pointers for further reading. They
should help the reader orient themselves within the sub-area and understand how it re-
lates to other parts of machine learning. The notes are less self-contained than the main
text. Depending on your level of background knowledge and interest, you may find these
sections more or less useful.

Each chapter has a number of associated problems. They are referenced in the margin
of the main text at the point that they should be attempted. As George Pdélya noted,
“Mathematics, you see, is not a spectator sport.” He was correct, and I highly recommend
that you attempt the problems as you go. In some cases, they provide insights that will
help you understand the main text. Problems for which the answers are provided on the
associated website are indicated with an asterisk. Additionally, Python notebooks that
will help you understand the ideas in this book are also available via the website, and
these are also referenced in the margins of the text. Indeed, if you are feeling rusty, it
might be worth working through the notebook on background mathematics right now.

Unfortunately, the pace of research in Al makes it inevitable that this book will be a
constant work in progress. If there are parts you find hard to understand, notable omis-
sions, or sections that seem extraneous, please get in touch via the associated website.
Together, we can make the next edition better.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

2.1

Chapter 2

Supervised learning

A supervised learning model defines a mapping from one or more inputs to one or more
outputs. For example, the input might be the age and mileage of a secondhand Toyota
Prius, and the output might be the estimated value of the car in dollars.

The model is just a mathematical equation; when the inputs are passed through this
equation, it computes the output, and this is termed inference. The model equation also
contains parameters. Different parameter values change the outcome of the computa-
tion; the model equation describes a family of possible relationships between inputs and
outputs, and the parameters specify the particular relationship.

When we train or learn a model, we find parameters that describe the true relationship
between inputs and outputs. A learning algorithm takes a training set of input/output
pairs and manipulates the parameters until the inputs predict their corresponding out-
puts as closely as possible. If the model works well for these training pairs, then we hope
it will make good predictions for new inputs where the true output is unknown.

The goal of this chapter is to expand on these ideas. First, we describe this framework
more formally and introduce some notation. Then we work through a simple example
in which we use a straight line to describe the relationship between input and output.
This linear model is both familiar and easy to visualize, but nevertheless illustrates all
the main ideas of supervised learning.

Supervised learning overview

In supervised learning, we aim to build a model that takes an input x and outputs a
prediction y. For simplicity, we assume that both the input x and output y are vectors
of a predetermined and fixed size and that the elements of each vector are always ordered
in the same way; in the Prius example above, the input x would always contain the age
of the car and then the mileage, in that order. This is termed structured or tabular data.
To make the prediction, we need a model f[e] that takes input x and returns y, so:

y = f[x]. (2.1)

Draft: please send errata to udlbookmail@gmail.com.

2.2

2.2.1

18 2 Supervised learning

When we compute the prediction y from the input x, we call this inference.

The model is just a mathematical equation with a fixed form. It represents a family
of different relations between the input and the output. The model also contains param-
eters ¢. The choice of parameters determines the particular relation between input and
output, so we should really write:

y = fix, 9. (2.2)

When we talk about learning or training a model, we mean that we attempt to find
parameters ¢ that make sensible output predictions from the input. We learn these
parameters using a training dataset of I pairs of input and output examples {x;,y;}. We
aim to select parameters that map each training input to its associated output as closely
as possible. We quantify the degree of mismatch in this mapping with the loss L. This
is a scalar value that summarizes how poorly the model predicts the training outputs
from their corresponding inputs for parameters ¢.

We can treat the loss as a function L[¢] of these parameters. When we train the
model, we are seeking parameters qAb that minimize this loss function:!

¢ = argmin [L [qbﬂ . (2.3)
¢
If the loss is small after this minimization, we have found model parameters that accu-
rately predict the training outputs y; from the training inputs x;.
After training a model, we must now assess its performance; we run the model on
separate test data to see how well it generalizes to examples that it didn’t observe during
training. If the performance is adequate, then we are ready to deploy the model.

Linear regression example

Let’s now make these ideas concrete with a simple example. We consider a model y =
flz, @] that predicts a single output y from a single input . Then we develop a loss
function, and finally, we discuss model training.

1D linear regression model

A 1D linear regression model describes the relationship between input x and output y
as a straight line:

y = flz, 9]
= ¢o+ 1. (2.4)

'More properly, the loss function also depends on the training data {x;,y;}, so we should
write L [{x;,yi}, ¢], but this is rather cumbersome.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

2.2.2

2.2 Linear regression example 19

20 Q Figure 2.1 Linear regression model. For

a given choice of parameters ¢ =
o) [60,1]", the model makes a predic-
Q.Q“ tion for the output (y-axis) based on
Q// the input (x-axis). Different choices
Q for the y-intercept ¢o and the slope ¢1
change these predictions (cyan, orange,
and gray lines). The linear regression
model (equation 2.4) defines a family of
input/output relations (lines) and the
7 parameters determine the member of the
U 3, family (the particular line).

&

N\

%=12¢,= (4

Output, y

Dy <

~

0.0 T
0.0 1.0 2.0

Input, =

This model has two parameters ¢ = [¢g, #1]7, where ¢ is the y-intercept of the line
and ¢; is the slope. Different choices for the y-intercept and slope result in different
relations between input and output (figure 2.1). Hence, equation 2.4 defines a fam-
ily of possible input-output relations (all possible lines), and the choice of parameters
determines the member of this family (the particular line).

Loss

For this model, the training dataset (figure 2.2a) consists of I input/output pairs {z;,y; }.
Figures 2.2b—d show three lines defined by three sets of parameters. The green line
in figure 2.2d describes the data more accurately than the other two since it is much
closer to the data points. However, we need a principled approach for deciding which
parameters ¢ are better than others. To this end, we assign a numerical value to each
choice of parameters that quantifies the degree of mismatch between the model and the
data. We term this value the loss; a lower loss means a better fit.

The mismatch is captured by the deviation between the model predictions f[z;, @]
(height of the line at ;) and the ground truth outputs y;. These deviations are depicted
as orange dashed lines in figures 2.2b—d. We quantify the total mismatch, training error,
or loss as the sum of the squares of these deviations for all I training pairs:

(f[xlv ¢] - y2)2

-

Li¢] =

=1

(¢ + drws — yi)” . (2.5)

[
]~

i=1

Since the best parameters minimize this expression, we call this a least-squares loss. The
squaring operation means that the direction of the deviation (i.e., whether the line is

Draft: please send errata to udlbookmail@gmail.com.

20

2 Supervised learning

2.0
Loss, L = 7.07
& &
e ©© © o 00 . ©
® e R
> ® . ‘
o | :
210{ ®e ®e g
S e o7 i i
© b o S0
| (b\\?ﬂ'“
0% 1.0 2.0 0.0 1.0 2.0
<) Input, = d) Input, =
2.0
Loss, L = 10.28 Loss, L = 0.20
5) @ o .
¢ b
> : A SRR
20 i@g N il
g © NS
o ‘g i
AN
NN
\OCP
0.0 . v
0.0 10 2.0 0.0 1.0 2.0
Input, = Input, =

Figure 2.2 Linear regression training data, model, and loss. a) The training data
(orange points) consist of I = 12 input/output pairs {z;,y;}. b—d) Each panel
shows the linear regression model with different parameters. Depending on the
choice of y-intercept and slope parameters ¢ = [¢o, $1]” , the model errors (orange
dashed lines) may be larger or smaller. The loss L is the sum of the squares of
these errors. The parameters that define the lines in panels (b) and (c) have large
losses L = 7.07 and L = 10.28, respectively because the models fit badly. The
loss L=0.20 in panel (d) is smaller because the model fits well; in fact, this has
the smallest loss of all possible lines, so these are the optimal parameters.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

2.2 Linear regression example 21

a) b) Loss, L[¢]

-1.0

Loss, L[¢]

10 2.0
Intercept, ¢g

Figure 2.3 Loss function for linear regression model with the dataset in figure 2.2a.
a) Each combination of parameters ¢ = [¢o,¢1] has an associated loss. The result-
ing loss function L[¢] can be visualized as a surface. The three circles represent
the three lines from figure 2.2b—d. b) The loss can also be visualized as a heatmap,
where brighter regions represent larger losses; here we are looking straight down
at the surface in (a) from above and gray ellipses represent isocontours. The best
fitting line (figure 2.2d) has the parameters with the smallest loss (green circle).

above or below the data) is unimportant. There are also theoretical reasons for this
choice which we return to in chapter 5.

The loss L is a function of the parameters ¢; it will be larger when the model fit is
poor (figure 2.2b,c) and smaller when it is good (figure 2.2d). Considered in this light,
we term L[¢] the loss function or cost function. The goal is to find the parameters @
that minimize this quantity:

¢ = arg};ﬂin [L[dﬂ

I
= arg;)nin [Z (flx;, @] — yi)Q]

i=1
I
= arg(l;lin [Z (¢() + (;51:61- - yz)2‘| . (26)
i=1

There are only two parameters (the y-intercept ¢o and slope ¢1), so we can calculate
the loss for every combination of values and visualize the loss function as a surface
(figure 2.3). The “best” parameters are at the minimum of this surface.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 2.1
Supervised
learning

Problems 2.1-2.2

2.2.3

2.2.4

2.3

22 2 Supervised learning

Training

The process of finding parameters that minimize the loss is termed model fitting, training,
or learning. The basic method is to choose the initial parameters randomly and then
improve them by “walking down” the loss function until we reach the bottom (figure 2.4).
One way to do this is to measure the gradient of the surface at the current position and
take a step in the direction that is most steeply downhill. Then we repeat this process
until the gradient is flat and we can improve no further.?

Testing

Having trained the model, we want to know how it will perform in the real world. We
do this by computing the loss on a separate set of test data. The degree to which the
prediction accuracy generalizes to the test data depends in part on how representative
and complete the training data is. However, it also depends on how expressive the model
is. A simple model like a line might not be able to capture the true relationship between
input and output. This is known as underfitting. Conversely, a very expressive model
may describe statistical peculiarities of the training data that are atypical and lead to
unusual predictions. This is known as owverfitting.

Summary

A supervised learning model is a function y = f[x, ¢] that relates inputs x to outputs y.
The particular relationship is determined by parameters ¢. To train the model, we
define a loss function L[¢] over a training dataset {x;,y;}. This quantifies the mismatch
between the model predictions f[x;, @] and observed outputs y; as a function of the
parameters ¢. Then we search for the parameters that minimize the loss. We evaluate
the model on a different set of test data to see how well it generalizes to new inputs.

Chapters 3-9 expand on these ideas. First, we tackle the model itself; linear regression
has the obvious drawback that it can only describe the relationship between the input
and output as a straight line. Shallow neural networks (chapter 3) are only slightly
more complex than linear regression but describe a much larger family of input/output
relationships. Deep neural networks (chapter 4) are just as expressive but can describe
complex functions with fewer parameters and work better in practice.

Chapter 5 investigates loss functions for different tasks and reveals the theoretical
underpinnings of the least-squares loss. Chapters 6 and 7 discuss the training process.
Chapter 8 discusses how to measure model performance. Chapter 9 considers regular-
1zation techniques, which aim to improve that performance.

2This iterative approach is not actually necessary for the linear regression model. Here, it’s possible
to find closed-form expressions for the parameters. However, this gradient descent approach works for
more complex models where there is no closed-form solution and where there are too many parameters
to evaluate the loss for every combination of values.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 23

a) Loss, L[¢]
-1.0
<
U 0.0
©
V2] \
N
~o®
1.0 . 0.0 +——————————————
0.0 1.0 2.0 0.0 1.0 2.0
Intercept, ¢g Input, =

Figure 2.4 Linear regression training. The goal is to find the y-intercept and slope
parameters that correspond to the smallest loss. a) Iterative training algorithms
initialize the parameters randomly and then improve them by “walking downhill”
until no further improvement can be made. Here, we start at position 0 and move
a certain distance downhill (perpendicular to the contours) to position 1. Then
we re-calculate the downhill direction and move to position 2. Eventually, we
reach the minimum of the function (position 4). b) Each position 0—4 from panel
(a) corresponds to a different y-intercept and slope and so represents a different
line. As the loss decreases, the lines fit the data more closely.

Notes

Loss functions vs. cost functions: In much of machine learning and in this book, the terms
loss function and cost function are used interchangeably. However, more properly, a loss function
is the individual term associated with a data point (i.e., each of the squared terms on the right-
hand side of equation 2.5), and the cost function is the overall quantity that is minimized (i.e.,
the entire right-hand side of equation 2.5). A cost function can contain additional terms that
are not associated with individual data points (see section 9.1). More generally, an objective
function is any function that is to be maximized or minimized.

Generative vs. discriminative models: The models y = f[x, ¢] in this chapter are discrim-
inative models. These make an output prediction y from real-world measurements x. Another
approach is to build a generative model x = gly, ¢], in which the real-world measurements x
are computed as a function of the output y.

The generative approach has the disadvantage that it doesn’t directly predict y. To perform
inference, we must invert the generative equation as y = gfl[x, ¢], and this may be difficult.
However, generative models have the advantage that we can build in prior knowledge about how
the data were created. For example, if we wanted to predict the 3D position and orientation y

Draft: please send errata to udlbookmail@gmail.com.

Problem 2.3

24 2 Supervised learning

of a car in an image x, then we could build knowledge about car shape, 3D geometry, and light
transport into the function x = gy, ¢].

This seems like a good idea, but in fact, discriminative models dominate modern machine
learning; the advantage gained from exploiting prior knowledge in generative models is usually
trumped by learning very flexible discriminative models with large amounts of training data.

Problems

Problem 2.1 To walk “downhill” on the loss function (equation 2.5), we measure its gradient with
respect to the parameters ¢o and ¢1. Calculate expressions for the slopes OL/0¢o and OL/0¢1.

Problem 2.2 Show that we can find the minimum of the loss function in closed form by setting
the expression for the derivatives from problem 2.1 to zero and solving for ¢o and ¢1. Note that
this works for linear regression but not for more complex models; this is why we use iterative
model fitting methods like gradient descent (figure 2.4).

Problem 2.3* Consider reformulating linear regression as a generative model, so we have x =
gly, ¢] = ¢o + ¢1y. What is the new loss function? Find an expression for the inverse func-
tion y = g_l[x,qb] that we would use to perform inference. Will this model make the same
predictions as the discriminative version for a given training dataset {z;,y;}? One way to es-
tablish this is to write code that fits a line to three data points using both methods and see if
the result is the same.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.1

Chapter 3

Shallow neural networks

Chapter 2 introduced supervised learning using 1D linear regression. However, this model
can only describe the input/output relationship as a line. This chapter introduces shallow
neural networks. These describe piecewise linear functions and are expressive enough
to approximate arbitrarily complex relationships between multi-dimensional inputs and
outputs.

Neural network example

Shallow neural networks are functions y = f[x, ¢p] with parameters ¢ that map multivari-
ate inputs x to multivariate outputs y. We defer a full definition until section 3.4 and
introduce the main ideas using an example network f[z, ¢] that maps a scalar input x to
a scalar output y and has ten parameters ¢ = {¢q, ¢1, 2, b3, 010,011, 020, 021, 030, 031 }:

y = flz,q]
= ¢o+ ¢1a[fio + b1z] + p2a[ba0 + O212] + d3a[030 + O312]. (3.1)

We can break down this calculation into three parts: first, we compute three linear
functions of the input data (619 + 0112, 020 + 021, and 039 + O312). Second, we pass the
three results through an activation function ale]. Finally, we weight the three resulting
activations with ¢1, ¢2, and ¢3, sum them, and add an offset ¢yg.

To complete the description, we must define the activation function afe]. There are
many possibilities, but the most common choice is the rectified linear unit or ReLU:

0 z<0

. 3.2
z z>0 (3:2)

a[z] = ReLU[z] = {

This returns the input when it is positive and zero otherwise (figure 3.1).
It is probably not obvious which family of input/output relations is represented by
equation 3.1. Nonetheless, the ideas from the previous chapter are all applicable. Equa-
tion 3.1 represents a family of functions where the particular member of the family

Draft: please send errata to udlbookmail@gmail.com.

3.1.1

26 3 Shallow neural networks

Figure 3.1 Rectified linear unit (ReLU). >0

This activation function returns zero if
the input is less than zero and returns
the input unchanged otherwise. In other
words, it clips negative values to zero.
Note that there are many other possi-
ble choices for the activation function
(see figure 3.13), but the ReLU is the
most commonly used and the easiest to
understand.

RelU[z]

-5.0 |
5.0 0.0 5.0

0.0 10 2.0 0.0 10 2.0 0.0 10 2.0
Input, z Input, Input, =

Figure 3.2 Family of functions defined by equation 3.1. a—c) Functions for three
different choices of the ten parameters ¢. In each case, the input/output relation
is piecewise linear. However, the positions of the joints, the slopes of the linear
regions between them, and the overall height vary.

depends on the ten parameters in ¢. If we know these parameters, we can perform
inference (predict y) by evaluating the equation for a given input x. Given a training
dataset {z;,y;}]_;, we can define a least squares loss function L[¢] and use this to mea-
sure how effectively the model describes this dataset for any given parameter values ¢.
To train the model, we search for the values ¢ that minimize this loss.

Neural network intuition

In fact, equation 3.1 represents a family of continuous piecewise linear functions (fig-
ure 3.2) with up to four linear regions. We now break down equation 3.1 and show why
it describes this family. To make this easier to understand, we split the function into
two parts. First, we introduce the intermediate quantities:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.1.2

3.1 Neural network example 27

hy = 3[910 =+ 91117]
ho = a[fg + O217]
hs = alfs + O312], (3.3)

where we refer to hy, ho, and hz as hidden units. Second, we compute the output by
combining these hidden units with a linear function:!

Yy = ¢o + ¢rh1 + ¢2ha + P3hs. (3.4)

Figure 3.3 shows the flow of computation that creates the function in figure 3.2a.
Each hidden unit contains a linear function e + 8¢12 of the input, and that line is
clipped by the ReLU function a[e] below zero. The positions where the three lines cross
zero become the three “joints” in the final output. The three clipped lines are then
weighted by ¢1, @2, and ¢3, respectively. Finally, the offset ¢¢ is added, which controls
the overall height of the final function.

Each linear region in figure 3.3j corresponds to a different activation pattern in the
hidden units. When a unit is clipped, we refer to it as inactive, and when it is not
clipped, we refer to it as active. For example, the shaded region receives contributions
from h; and hs (which are active) but not from hg (which is inactive). The slope of
each linear region is determined by (i) the original slopes #e1 of the active inputs for this
region and (ii) the weights ¢, that were subsequently applied. For example, the slope in
the shaded region (see problem 3.3) is 011¢1 + 031 ¢3, where the first term is the slope in
panel (g) and the second term is the slope in panel (i).

Each hidden unit contributes one “joint” to the function, so with three hidden units,
there can be four linear regions. However, only three of the slopes of these regions are
independent; the fourth is either zero (if all the hidden units are inactive in this region)
or is a sum of slopes from the other regions.

Depicting neural networks

We have been discussing a neural network with one input, one output, and three hidden
units. We visualize this network in figure 3.4a. The input is on the left, the hidden units
are in the middle, and the output is on the right. Each connection represents one of the
ten parameters. To simplify this representation, we do not typically draw the intercept
parameters, so this network is usually depicted as in figure 3.4b.

1For the purposes of this book, a linear function has the form 2z’ = ¢g + >; ¢izi. Any other type of
function is nonlinear. For instance, the ReLU function (equation 3.2) and the example neural network
that contains it (equation 3.1) are both nonlinear. See notes at end of chapter for further clarification.

Draft: please send errata to udlbookmail@gmail.com.

Problems 3.1-3.8

Notebook 3.1
Shallow networks I

Problem 3.9

3 Shallow neural networks

3)1.0 b) <)
5
500
>
(@]
. 010 + 0112 20 + 0212 O30 + 031
0.0 10 2.0 0.0 10 2000 10 2.0
d),. e) f
S _—/
5-0.0]
3
(@]
o hy = a[010 + 9111’} hoy = 21[92() + 921;1,‘} hs = 3[930 + 6311‘]
0 10 2000 10 2000 0 20
h i
g)))
5
50.0]
>
(@]
10 (blhl ()3/1,2 (]53]7,3
0.0 10 2.0 0.0 10 2.0 0.0 10 2.0
Input, = . Input, =
i)
1.0
SN
2 0.0-
+ p
>
(@]
{ bo+d1h1+d2ho+dshs
0 e e
0.0 1.0 2.0
Input, =

Figure 3.3 Computation for function in figure 3.2a. a—c) The input z is passed
through three linear functions, each with a different y-intercept f¢0 and slope fq1.
d—f) Each line is passed through the ReLU activation function, which clips neg-
ative values to zero. g—i) The three clipped lines are then weighted (scaled) by
o1, ¢2, and ¢3, respectively. j) Finally, the clipped and weighted functions are
summed, and an offset ¢ that controls the height is added. Each of the four
linear regions corresponds to a different activation pattern in the hidden units.
In the shaded region, hs is inactive (clipped), but hi and hs are both active.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.2

3.2 Universal approximation theorem 29

()
:) y

Figure 3.4 Depicting neural networks. a) The input = is on the left, the hidden
units hi, he, and hs in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter ¢;
by source h; and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply ¢o by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the d** hidden unit is:

hg = a[9d0 + Gdlx], (35)

and these are combined linearly to create the output:

D
Y=o+ Z Gaha- (3.6)
d=1
The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at
most D joints and so is a piecewise linear function with at most D + 1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

Problem 3.10

3.3

3.31

30 3 Shallow neural networks

a) b) c)

5 linear regions o 10 linear regions 20 linear regions P
oy "I 2 PN 'II
\‘ :' \\ ll
@ \\ ll \\‘ Il
g “\ l" \‘\ l’l
2.0.0 \ i \ Y
< N 4 N -~
=} \ I,' \ l,'
(@] S] \ i/
1) v I
‘\ l’ ‘\ [’
\‘ % ‘\ ’
1.0 - - -
0.0 1.0 2.0 0.0 1.0 2.00.0 1.0 2.0
Input, = Input, Input, =

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a—c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of R” to
arbitrary precision.

Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [z, 72, ..., 7p,]T to multivariate output
predictions y = [y1,2,...,yp,]T. We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units hq, ha, hs, and hyg, and a 2D multivariate output y = [y1, yg]T would be defined as:

hi = a[bio+ 0112]
hy = a[fa + 0217]
hs = a[f30 + 0317]
hy = a[bso + Os1z], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.3.2

3.3 Multivariate inputs and outputs

Input, =

Figure 3.6 Network with one input, four hidden units, and two outputs. a)
Visualization of network structure. b) This network produces two piecewise linear
functions, y1[z] and y2[x]. The four “joints” of these functions (at vertical dotted
lines) are constrained to be in the same places since they share the same hidden
units, but the slopes and overall height may differ.

@ Figure 3.7 Visualization of neural net-

l work with 2D multivariate input x =
‘ @ @ [:E1,x2]T and scalar output y.

Y1 = ¢10+ ¢11h1 + ¢r2ho + d13h3 + P14hy

Yo = @20 + d21h1 + Paoha + Pazhs + ¢paaha. (3.8)

The two outputs are two different linear functions of the hidden units.

As we saw in figure 3.3, the “joints” in the piecewise functions depend on where the
initial linear functions e + B¢1 are clipped by the ReLU functions a[e] at the hidden
units. Since both outputs y; and ys are different linear functions of the same four hidden
units, the four “joints” in each must be in the same places. However, the slopes of the

linear regions and the overall vertical offset can differ (figure 3.6).

Visualizing multivariate inputs

To cope with multivariate inputs x, we extend the linear relations between the input
and the hidden units. So a network with two inputs x = [z1, 2] and a scalar output y

(figure 3.7) might have three hidden units defined by:

Draft: please send errata to udlbookmail@gmail.com.

1.0 2.0

Problem 3.11

3 Shallow neural networks

a)1) 010 + 01121 + O1272 b) 020 + 02121 + 2022 C) 030 + 03121 + 03222

)

hi=al[f10+ 01121 +61222] e) ho =a[fa0+02121 +02222] f) hs =a[030+ 03121 +03022]

)

g) b1l h) dohy i) d3hs

o
o

o0 00 10-10 0.0 10-1 .
Input, 2, j) Y= Po+1hi+¢2ha+¢shs Input,

\

|

10 00
Input, 1

.0

Figure 3.8 Processing in network with two inputs x = xl,xg]T, three hidden
units hi, he, hs, and one output y. a-—c) The input to each hidden unit is a
linear function of the two inputs, which corresponds to an oriented plane. Bright-
ness indicates function output. For example, in panel (a), the brightness repre-
sents 610 + 01121 + G12x2. Thin lines are contours. d—f) Each plane is clipped by
the ReLLU activation function (cyan lines are equivalent to “joints” in figures 3.3d—
f). g-i) The clipped planes are then weighted, and j) summed together with an
offset that determines the overall height of the surface. The result is a continuous
surface made up of convex piecewise linear polygonal regions.

s

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.4

3.4 Shallow neural networks: general case 33

hi = albio+ O11z1 + O1222]
ho = alba + 02121 + O2222)
hy = 3[930 + 03121 + 932l‘2], (39)

where there is now one slope parameter for each input. The hidden units are combined
to form the output in the usual way:

Yy = ¢o + ¢1h1 + d2h2 + P3hs. (3.10)

Figure 3.8 illustrates the processing of this network. Each hidden unit receives a linear
combination of the two inputs, which forms an oriented plane in the 3D input/output
space. The activation function clips the negative values of these planes to zero. The
clipped planes are then recombined in a second linear function (equation 3.10) to create
a continuous piecewise linear surface consisting of convex polygonal regions (figure 3.8j).
Each region corresponds to a different activation pattern. For example, in the central
triangular region, the first and third hidden units are active, and the second is inactive.

When there are more than two inputs to the model, it becomes difficult to visualize.
However, the interpretation is similar. The output will be a continuous piecewise linear
function of the input, where the linear regions are now convex polytopes in the multi-
dimensional input space.

Note that as the input dimensions grow, the number of linear regions increases rapidly
(figure 3.9). To get a feeling for how rapidly, consider that each hidden unit defines a
hyperplane that delineates the part of space where this unit is active from the part
where it is not (cyan lines in 3.8d-f). If we had the same number of hidden units as
input dimensions D;, we could align each hyperplane with one of the coordinate axes
(figure 3.10). For two input dimensions, this would divide the space into four quadrants.
For three dimensions, this would create eight octants, and for D; dimensions, this would
create 2P orthants. Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 27¢ linear regions.

Shallow neural networks: general case

We have described several example shallow networks to help develop intuition about how
they work. We now define a general equation for a shallow neural network y = f[x, ¢]
that maps a multi-dimensional input x € R”? to a multi-dimensional output y € RP»
using h € R? hidden units. Each hidden unit is computed as:

hd:a

D;
bao + Z edimi] ; (3.11)

=1

and these are combined linearly to create the output:

Draft: please send errata to udlbookmail@gmail.com.

Problems 3.12-3.13

Notebook 3.2
Shallow networks I1

Appendix B.1.2
Convex region

Notebook 3.3
Shallow network
regions

34 3 Shallow neural networks

a . b
)) L
2 D; =100 2 D, =100
. .2
o0 a @
10" o 10"
“— D; =50 “—
o o
— —
o 50 v 50
010 0 107
I I D;=10
S D; =10 > D.—5
= D, =5 =
100 D;=1 IOQ D;=1
500 1000 0 50000 100000
Number of hidden units Number of parameters

Figure 3.9 Linear regions vs. hidden units. a) Maximum possible regions as a
function of the number of hidden units for five different input dimensions D; =
{1,5,10,50,100}. The number of regions increases rapidly in high dimensions;
with D = 500 units and input size D; = 100, there can be greater than 10107
regions (solid circle). b) The same data are plotted as a function of the number of
parameters. The solid circle represents the same model as in panel (a) with D =
500 hidden units. This network has 51,001 parameters and would be considered
very small by modern standards.

x1 Z1

Figure 3.10 Number of linear regions vs. input dimensions. a) With a single input
dimension, a model with one hidden unit creates one joint, which divides the axis
into two linear regions. b) With two input dimensions, a model with two hidden
units can divide the input space using two lines (here aligned with axes) to create
four regions. c) With three input dimensions, a model with three hidden units
can divide the input space using three planes (again aligned with axes) to create
eight regions. Continuing this argument, it follows that a model with D; input
dimensions and D; hidden units can divide the input space with D; hyperplanes
to create 27 linear regions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.5

3.5 Terminology 35

Figure 3.11 Visualization of neural net-
work with three inputs and two out-
puts. This network has twenty param-
eters. There are fifteen slopes (indicated
by arrows) and five offsets (not shown).

D
Yi = djo + Z Pjahas (3.12)

d=1

where afe] is a nonlinear activation function. The model has parameters ¢ = {0ee, Poe }-
Figure 3.11 shows an example with three inputs, three hidden units, and two outputs.

The activation function permits the model to describe nonlinear relations between
input and the output, and as such, it must be nonlinear itself; with no activation func-
tion, or a linear activation function, the overall mapping from input to output would
be restricted to be linear. Many different activation functions have been tried (see fig-
ure 3.13), but the most common choice is the ReLU (figure 3.1), which has the merit
of being easily interpretable. With ReLU activations, the network divides the input
space into convex polytopes defined by the intersections of hyperplanes computed by
the “joints” in the ReLU functions. Each convex polytope contains a different linear
function. The polytopes are the same for each output, but the linear functions they
contain can differ.

Terminology

We conclude this chapter by introducing some terminology. Regrettably, neural networks
have a lot of associated jargon. They are often referred to in terms of layers. The left of
figure 3.12 is the input layer, the center is the hidden layer, and to the right is the output
layer. We would say that the network in figure 3.12 has one hidden layer containing
four hidden units. The hidden units themselves are sometimes referred to as neurons.
When we pass data through the network, the values of the inputs to the hidden layer
(i.e., before the ReLU functions are applied) are termed pre-activations. The values at
the hidden layer (i.e., after the ReLU functions) are termed activations.

For historical reasons, any neural network with at least one hidden layer is also called
a multi-layer perceptron, or MLP for short. Networks with one hidden layer (as described
in this chapter) are sometimes referred to as shallow neural networks. Networks with
multiple hidden layers (as described in the next chapter) are referred to as deep neural
networks. Neural networks in which the connections form an acyclic graph (i.e., a graph
with no loops, as in all the examples in this chapter) are referred to as feed-forward
networks. If every element in one layer connects to every element in the next (as in
all the examples in this chapter), the network is fully connected. These connections

Draft: please send errata to udlbookmail@gmail.com.

Problems 3.14-3.17

Notebook 3.4
Activation
functions

3.6

36 3 Shallow neural networks

Neuron or
Weight " hidden unit

Figure 3.12 Terminology. A shallow network consists of an input layer, a hidden
layer, and an output layer. Each layer is connected to the next by forward con-
nections (arrows). For this reason, these models are referred to as feed-forward
networks. When every variable in one layer connects to every variable in the
next, we call this a fully connected network. Each connection represents a slope
parameter in the underlying equation, and these parameters are termed weights.
The variables in the hidden layer are termed neurons or hidden units. The values
feeding into the hidden units are termed pre-activations, and the values at the
hidden units (i.e., after the ReLU function is applied) are termed activations.

represent slope parameters in the underlying equations and are referred to as network
weights. The offset parameters (not shown in figure 3.12) are called biases.

Summary

Shallow neural networks have one hidden layer. They (i) compute several linear functions
of the input, (ii) pass each result through an activation function, and then (iii) take a
linear combination of these activations to form the outputs. Shallow neural networks
make predictions y based on inputs x by dividing the input space into a continuous
surface of piecewise linear regions. With enough hidden units (neurons), shallow neural
networks can approximate any continuous function to arbitrary precision.

Chapter 4 discusses deep neural networks, which extend the models from this chapter
by adding more hidden layers. Chapters 5-7 describe how to train these models.

Notes

“Neural” networks: If the models in this chapter are just functions, why are they called
“neural networks”? The connection is, unfortunately, tenuous. Visualizations like figure 3.12
consist of nodes (inputs, hidden units, and outputs) that are densely connected to one another.
This bears a superficial similarity to neurons in the mammalian brain, which also have dense
connections. However, there is scant evidence that brain computation works in the same way
as neural networks, and it is unhelpful to think about biology going forward.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 37

2.0
) g] | softplus[z]
Eoo _S_lgy | LReLU[z]]
o GelU[7]
SiLU[z]
o T PReLU]z, 0.25] 1
-4.0 0.0 4.0 -4.0 0.0 4.0
d
Lo
N
= 001 ELU[z, 0.5]
ELU[z, 1.0]
-2.0 - - -
-4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0 4.0

Figure 3.13 Activation functions. a) Logistic sigmoid and tanh functions. b)
Leaky ReLU and parametric ReLU with parameter 0.25. ¢) SoftPlus, Gaussian
error linear unit, and sigmoid linear unit. d) Exponential linear unit with param-
eters 0.5 and 1.0, e) Scaled exponential linear unit. f) Swish with parameters 0.4,
1.0, and 1.4.

History of neural networks: McCulloch & Pitts (1943) first came up with the notion of an
artificial neuron that combined inputs to produce an output, but this model did not have a prac-
tical learning algorithm. Rosenblatt (1958) developed the perceptron, which linearly combined
inputs and then thresholded them to make a yes/no decision. He also provided an algorithm
to learn the weights from data. Minsky & Papert (1969) argued that the linear function was
inadequate for general classification problems but that adding hidden layers with nonlinear
activation functions (hence the term multi-layer perceptron) could allow the learning of more
general input/output relations. However, they concluded that Rosenblatt’s algorithm could not
learn the parameters of such models. It was not until the 1980s that a practical algorithm
(backpropagation, see chapter 7) was developed, and significant work on neural networks re-
sumed. The history of neural networks is chronicled by Kurenkov (2020), Sejnowski (2018), and
Schmidhuber (2022).

Activation functions: The RelLU function has been used as far back as Fukushima (1969).
However, in the early days of neural networks, it was more common to use the logistic sigmoid or
tanh activation functions (figure 3.13a). The ReLU was re-popularized by Jarrett et al. (2009),
Nair & Hinton (2010), and Glorot et al. (2011) and is an important part of the success story of
modern neural networks. It has the nice property that the derivative of the output with respect
to the input is always one for inputs greater than zero. This contributes to the stability and
efficiency of training (see chapter 7) and contrasts with the derivatives of sigmoid activation

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.2
Binomial
coefficient

Problem 3.18

38 3 Shallow neural networks

functions, which saturate (become close to zero) for large positive and large negative inputs.

However, the ReLU function has the disadvantage that its derivative is zero for negative inputs.
If all the training examples produce negative inputs to a given ReLLU function, then we cannot
improve the parameters feeding into this ReLLU during training. The gradient with respect to
the incoming weights is locally flat, so we cannot “walk downhill.” This is known as the dying
ReLU problem. Many variations on the ReLLU have been proposed to resolve this problem
(figure 3.13b), including (i) the leaky ReLU (Maas et al., 2013), which also has a linear output
for negative values with a smaller slope of 0.1, (ii) the parametric ReLU (He et al., 2015), which
treats the slope of the negative portion as an unknown parameter, and (iii) the concatenated
ReLU (Shang et al., 2016), which produces two outputs, one of which clips below zero (i.e., like
a typical ReLU) and one of which clips above zero.

A variety of smooth functions have also been investigated (figure 3.13c—d), including the soft-
plus function (Glorot et al., 2011), Gaussian error linear unit (Hendrycks & Gimpel, 2016),
sigmoid linear unit (Hendrycks & Gimpel, 2016), and exponential linear unit (Clevert et al.,
2015). Most of these are attempts to avoid the dying ReL.U problem while limiting the gradient
for negative values. Klambauer et al. (2017) introduced the scaled exponential linear unit (fig-
ure 3.13e), which is particularly interesting as it helps stabilize the variance of the activations
when the input variance has a limited range (see section 7.5). Ramachandran et al. (2017)
adopted an empirical approach to choosing an activation function. They searched the space
of possible functions to find the one that performed best over a variety of supervised learning
tasks. The optimal function was found to be a[z] = x/(1 + exp[—fz]), where 3 is a learned
parameter (figure 3.13f). They termed this function Swish. Interestingly, this was a rediscovery
of activation functions previously proposed by Hendrycks & Gimpel (2016) and Elfwing et al.
(2018). Howard et al. (2019) approximated Swish by the HardSwish function, which has a very
similar shape but is faster to compute:

0 z2< =3
HardSwish[z] = ¢ 2(2 +3)/6 -3<2<3. (3.13)
z z2>3

There is no definitive answer as to which of these activations functions is empirically superior.
However, the leaky ReLLU, parameterized ReLU, and many of the continuous functions can be
shown to provide minor performance gains over the ReLLU in particular situations. We restrict
attention to neural networks with the basic ReLLU function for the rest of this book because it’s
easy to characterize the functions they create in terms of the number of linear regions.

Universal approximation theorem: The width version of this theorem states that there
exists a network with one hidden layer containing a finite number of hidden units that can
approximate any specified continuous function on a compact subset of R" to arbitrary accuracy.
This was proved by Cybenko (1989) for a class of sigmoid activations and was later shown to
be true for a larger class of nonlinear activation functions (Hornik, 1991).

Number of linear regions: Consider a shallow network with D; > 2-dimensional inputs
and D hidden units. The number of linear regions is determined by the intersections of the D
hyperplanes created by the “joints” in the ReLU functions (e.g., figure 3.8d—f). Each region is
created by a different combination of the ReLU functions clipping or not clipping the input.
The number of regions created by D hyperplanes in the D; < D-dimensional input space was
shown by Zaslavsky (1975) to be at most ZJ.D;O (?) (i.e., a sum of binomial coefficients). As a
rule of thumb, shallow neural networks almost always have a larger number D of hidden units
than input dimensions D; and create between 2P and 2P linear regions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 39

Linear, affine, and nonlinear functions: Technically, a linear transformation f[e] is any
function that obeys the principle of superposition, so fla+b] = f[a] +{[b]. This definition implies
that f[2a] = 2f[a].The weighted sum f[h1, ha, hs] = ¢1h1 + Pp2h2 + ¢shs is linear, but once the
offset (bias) is added so f[h17 ha, h3] = ¢o + ¢1h1 + ¢d2h2 + Pshs, this is no longer true. To see
this, consider that the output is doubled when we double the arguments of the former function.
This is not the case for the latter function, which is more properly termed an affine function.
However, it is common in machine learning to conflate these terms. We follow this convention
in this book and refer to both as linear. All other functions we will encounter are nonlinear.

Problems

Problem 3.1 What kind of mapping from input to output would be created if the activation
function in equation 3.1 was linear so that a[z] = 1o + 1127 What kind of mapping would be
created if the activation function was removed, so a[z] = 27

Problem 3.2 For each of the four linear regions in figure 3.3j, indicate which hidden units are
inactive and which are active (i.e., which do and do not clip their inputs).

Problem 3.3" Derive expressions for the positions of the “joints” in function in figure 3.3j in
terms of the ten parameters ¢ and the input z. Derive expressions for the slopes of the four
linear regions.

Problem 3.4 Draw a version of figure 3.3 where the y-intercept and slope of the third hidden
unit have changed as in figure 3.14c. Assume that the remaining parameters remain the same.

b) c)

1.0
4
3
500
3
(@)
" 010 + 011w Oo0 + 217 O30 + 0312
Yoo T T T 1o T 7 T 2000 7 "0 7 T2000 7 10 T 7 720
Input, = Input, = Input, =

Figure 3.14 Processing in network with one input, three hidden units, and one
output for problem 3.4. a—c) The input to each hidden unit is a linear function of
the inputs. The first two are the same as in figure 3.3, but the last one differs.

Problem 3.5 Prove that the following property holds for o € R™:

ReLUJa - z] = o - ReLU[z]. (3.14)

This is known as the non-negative homogeneity property of the ReLLU function.

Draft: please send errata to udlbookmail@gmail.com.

40 3 Shallow neural networks

Problem 3.6 Following on from problem 3.5, what happens to the shallow network defined in
equations 3.3 and 3.4 when we multiply the parameters 619 and 611 by a positive constant «
and divide the slope ¢1 by the same parameter a? What happens if « is negative?

Problem 3.7 Consider fitting the model in equation 3.1 using a least squares loss function. Does
this loss function have a unique minimum? i.e., is there a single “best” set of parameters?

Problem 3.8 Consider replacing the ReLU activation function with (i) the Heaviside step func-
tion heaviside[z], (ii) the hyperbolic tangent function tanh[z], and (iii) the rectangular func-
tion rect[z], where:

0 <0 0 z<0
heaviside[z] = {1 ? -0 rect[z] = ¢ 1 0<z<1. (3.15)
z
- 0 z>1

Redraw a version of figure 3.3 for each of these functions. The original parameters were: ¢ =
{0, b1, b2, d3, 010,011, 020, 021, 030, 031+ = {—0.23, —1.3,1.3,0.66, —0.2,0.4, —0.9,0.9, 1.1, —0.7}.
Provide an informal description of the family of functions that can be created by neural networks
with one input, three hidden units, and one output for each activation function.

Problem 3.9" Show that the third linear region in figure 3.3 has a slope that is the sum of the
slopes of the first and fourth linear regions.

Problem 3.10 Consider a neural network with one input, one output, and three hidden units.
The construction in figure 3.3 shows how this creates four linear regions. Under what circum-
stances could this network produce a function with fewer than four linear regions?

Problem 3.11" How many parameters does the model in figure 3.6 have?
Problem 3.12 How many parameters does the model in figure 3.7 have?

Problem 3.13 What is the activation pattern for each of the seven regions in figure 3.87 In other
words, which hidden units are active (pass the input) and which are inactive (clip the input)
for each region?

Problem 3.14 Write out the equations that define the network in figure 3.11. There should
be three equations to compute the three hidden units from the inputs and two equations to
compute the outputs from the hidden units.

Problem 3.15" What is the maximum possible number of 3D linear regions that can be created
by the network in figure 3.117

Problem 3.16 Write out the equations for a network with two inputs, four hidden units, and
three outputs. Draw this model in the style of figure 3.11.

Problem 3.17* Equations 3.11 and 3.12 define a general neural network with D; inputs, one
hidden layer containing D hidden units, and D, outputs. Find an expression for the number of
parameters in the model in terms of D;, D, and D,.

Problem 3.18" Show that the maximum number of regions created by a shallow network
with D; = 2-dimensional input, D, = 1-dimensional output, and D = 3 hidden units is seven, as
in figure 3.8j. Use the result of Zaslavsky (1975) that the maximum number of regions created
by partitioning a D;-dimensional space with D hyperplanes is ng:io (?) What is the maximum
number of regions if we add two more hidden units to this model, so D = 57

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.1

Chapter 4

Deep neural networks

The last chapter described shallow neural networks, which have a single hidden layer.
This chapter introduces deep neural networks, which have more than one hidden layer.
With ReLU activation functions, both shallow and deep networks describe piecewise
linear mappings from input to output.

As the number of hidden units increases, shallow neural networks improve their
descriptive power. Indeed, with enough hidden units, shallow networks can describe
arbitrarily complex functions in high dimensions. However, it turns out that for some
functions, the required number of hidden units is impractically large. Deep networks can
produce many more linear regions than shallow networks for a given number of parame-
ters. Hence, from a practical standpoint, they can be used to describe a broader family
of functions.

Composing neural networks

To gain insight into the behavior of deep neural networks, we first consider composing
two shallow networks so the output of the first becomes the input of the second. Consider
two shallow networks with three hidden units each (figure 4.1a). The first network takes
an input x and returns output y and is defined by:

hi = albho+ 0117]
ho = alfy + 0212]
hs = alfs + O312], (4.1)
and
Y = ¢o + @1hy + p2ha + @3hs. (4.2)

The second network takes y as input and returns 3’ and is defined by:

Draft: please send errata to udlbookmail@gmail.com.

42

4 Deep neural networks

Network 1 C) Network 2

L f —o—, 1% 0.0 1.0
Input, = Input, y

d) Network 142

-1.0 0.0
Input, =

Figure 4.1 Composing two single-layer networks with three hidden units each. a)
The output y of the first network constitutes the input to the second network. b)
The first network maps inputs z € [—1, 1] to outputs y € [—1, 1] using a function
comprised of three linear regions that are chosen so that they alternate the sign
of their slope. Multiple inputs x (gray circles) now map to the same output y
(cyan circle). ¢) The second network defines a function comprising three linear
regions that takes y and returns g’ (i.e., the cyan circle is mapped to the brown
circle). d) The combined effect of these two functions when composed is that (i)
three different inputs x are mapped to any given value of y by the first network
and (ii) are processed in the same way by the second network; the result is that
the function defined by the second network in panel (c) is duplicated three times,
variously flipped and rescaled according to the slope of the regions of panel (b).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.2

4.2 From composing networks to deep networks 43

hy = alby+ 01,y
5 = a[fyy + 05y
5 = alfi + 05y, (4.3)
and
Y = ¢p + d1hy + Pl + Pihs. (4.4)

With ReLlU activations, this model also describes a family of piecewise linear functions.
However, the number of linear regions is potentially greater than for a shallow network
with six hidden units. To see this, consider choosing the first network to produce three
alternating regions of positive and negative slope (figure 4.1b). This means that three
different ranges of x are mapped to the same output range y € [—1, 1], and the subsequent
mapping from this range of y to ¢’ is applied three times. The overall effect is that the
function defined by the second network is duplicated three times to create nine linear
regions. The same principle applies in higher dimensions (figure 4.2).

A different way to think about composing networks is that the first network “folds”
the input space z back onto itself so that multiple inputs generate the same output.
Then the second network applies a function, which is replicated at all points that were
folded on top of one another (figure 4.3).

From composing networks to deep networks

The previous section showed that we could create complex functions by passing the
output of one shallow neural network into a second network. We now show that this is
a special case of a deep network with two hidden layers.

The output of the first network (y = ¢o + ¢1h1 + d2ha + ¢p3hs) is linear and so are
the first operations of the second network (equation 4.3 in which we calculate 6}, + 6}, v,
04y + 051y, and 04, + 04, y). Applying one linear function to another yields another linear
function. When we substitute the expression for y into equation 4.3, the result is:

hy = alfly+0uy] = alfiy + 010 + 0 P1h + 011 P2ho + 011 ¢3hs]
hy = alfhyy+05y] = albhy + 0560+ 0501k + 05 daha + 05 ¢shs)
hy = alfs+05y] = alfyy+ 0500 + 03010 + 051 2h2 + 031 ¢3hs],
(4.5)
which we can rewrite as:
hll = a[wlo —+ ¢11h1 + 1/)12}7/2 + ¢13h‘3]
hy = afhg + Ya1hy + Yasho + Pashs]
hy = althso + 31hy + Ps2hs + P3shs], (4.6)

Draft: please send errata to udlbookmail@gmail.com.

Problem 4.1

Notebook 4.1
| .
Composing
networks

4

Deep neural networks

Output, y

o

7

)

)

Output, y

—

=

0.
Input, z;

.0

0.0 1.0
Input, y

o

Iy

\

0.0
Input, z;

Figure 4.2 Composing neural networks with a 2D input. a) The first network
(from figure 3.8) has three hidden units and takes two inputs x1 and z2 and returns
a scalar output y. This is passed into a second network with two hidden units to
produce y’. b) The first network produces a function consisting of seven linear
regions, one of which is flat. ¢) The second network defines a function comprising
two linear regions in y € [—1,1]. d) When these networks are composed, each of
the six non-flat regions from the first network is divided into two new regions by

the second network to create a total of 13 linear regions.

Input, =

b)

/

Output, v/’

T~

Input, y

¢)

Output,

Figure 4.3 Deep networks as folding input space. a) One way to think about
the first network from figure 4.1 is that it “folds” the input space back on top
of itself. b) The second network applies its function to the folded space. ¢) The

final output is revealed by “unfolding” again.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.3

4.3 Deep neural networks 45

Figure 4.4 Neural network with one input, one output, and two hidden layers,
each containing three hidden units.

where 119 = 01 + 01100, V11 = 011¢1,112 = 011¢P2 and so on. The result is a network
with two hidden layers (figure 4.4).

It follows that a network with two layers can represent the family of functions created
by passing the output of one single-layer network into another. In fact, it represents a
broader family because in equation 4.6, the nine slope parameters 111,191, ...,1%33 can
take arbitrary values, whereas, in equation 4.5, these parameters are constrained to be
the outer product [0}, 05,0517 [61, ¢2, ¢3).

Deep neural networks

In the previous section, we showed that composing two shallow networks yields a special
case of a deep network with two hidden layers. Now we consider the general case of a
deep network with two hidden layers, each containing three hidden units (figure 4.4).
The first layer is defined by:

hl = 3[010 —+ 011$}
ho afao + 0217]
hs = alfso + 0512], (4.7)

the second layer by:

T = aio + Yi1hi + Y12ha + Y13hs]
5 = afheo + VYo1hy + Yaha + azhs]
5 = alzo +¥aihi + azha + P33ha), (4.8)

and the output by:

Y = ¢y + 1hy + Sk + Phs. (4.9)

Draft: please send errata to udlbookmail@gmail.com.

Notebook 4.2
Clipping
functions

4.3.1
Problem 4.2

46 4 Deep neural networks

Considering these equations leads to another way to think about how the network con-
structs an increasingly complicated function (figure 4.5):

1. The three hidden units h1, ho, and hz in the first layer are computed as usual by
forming linear functions of the input and passing these through ReLU activation
functions (equation 4.7).

2. The pre-activations at the second layer are computed by taking three new linear
functions of these hidden units (arguments of the activation functions in equa-
tion 4.8). At this point, we effectively have a shallow network with three outputs;
we have computed three piecewise linear functions with the “joints” between linear
regions in the same places (see figure 3.6).

3. At the second hidden layer, another ReLU function a[e] is applied to each function
(equation 4.8), which clips them and adds new “joints” to each.

4. The final output is a linear combination of these hidden units (equation 4.9).

In conclusion, we can either think of each layer as “folding” the input space or as cre-
ating new functions, which are clipped (creating new regions) and then recombined. The
former view emphasizes the dependencies in the output function but not how clipping
creates new joints, and the latter has the opposite emphasis. Ultimately, both descrip-
tions provide only partial insight into how deep neural networks operate. Regardless,
it’s important not to lose sight of the fact that this is still merely an equation relating
input = to output y’. Indeed, we can combine equations 4.7-4.9 to get one expression:

v = ¢+ dralvio + ria[bio + 0112] + 12a[ba0 + O212] + Y13a[030 + O312]]
+@hathao + Por1a[b10 + O112] + a2a[f20 + O217] + hazalfsy + O312]]
+@halthso + Ps1alfio + O11x] + PYs2alfag + O212] + P3zalfso + O312]],

(4.10)

although this is admittedly rather difficult to understand.

Hyperparameters

We can extend the deep network construction to more than two hidden layers; modern
networks might have more than a hundred layers with thousands of hidden units at each
layer. The number of hidden units in each layer is referred to as the width of the network,
and the number of hidden layers as the depth. The total number of hidden units is a
measure of the network’s capacity.

We denote the number of layers as K and the number of hidden units in each layer
as Dy, Do, ..., Dg. These are examples of hyperparameters. They are quantities chosen
before we learn the model parameters (i.e., the slope and intercept terms). For fixed
hyperparameters (e.g., K = 2 layers with Dy = 3 hidden units in each), the model
describes a family of functions, and the parameters determine the particular function.
Hence, when we also consider the hyperparameters, we can think of neural networks as
representing a family of families of functions relating input to output.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.3 Deep neural networks 47
a)1.0 b) <)
3+
35
S0
>
(@]
0 1@10.+¢.11h.1+1l}12.h2.+1l).13f?3 1/{20.+¢.21h.1+1/122.h2.+¢.23f}3 11{30fr¢§1h.1+1/132.h2fr1/{33}.b3
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
d e f
).,))
4=
3
S0
>
(@)
hy = By = By =
alth1o+¥11h1 +P12ho +11303] athao+1a1h1+1Pasho +1bashs]| {a[thzo+1P31hy +1s2ha+1)33ha)
L9% 1.0 2.0 0.0 1.0 2.0 0.0 10 2.0
g, h) i)
+J
35
S0
>
(@]
10 d)/l.hll ¢/2.h/2 ¢§Ihé
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Input, = j) Input, = Input, =
1.0
=Y
")
200
+—
o}
(@]
o Bo + PLh) + ghhh + g5hl
0.0 1.0 2.0
Input,

Figure 4.5 Computation for the deep network in figure 4.4.

a—c) The inputs

to the second hidden layer (i.e., the pre-activations) are three piecewise linear
functions where the “joints” between the linear regions are at the same places
(see figure 3.6). d—f) Each piecewise linear function is clipped to zero by the
ReLU activation function. g—i) These clipped functions are then weighted with
parameters ¢, @5, and @3, respectively. j) Finally, the clipped and weighted
functions are summed and an offset ¢, that controls the overall height is added.

Draft: please send errata to udlbookmail@gmail.com.

4.4

Appendix B.3
Matrices

48 4 Deep neural networks

Tnout. x Hidden Hidden Hidden Output
put, layer, hy layer, ho layer, hs wput, ¥
D;=3 Dy =4 Dy =2 D3 =3 D,=2

Figure 4.6 Matrix notation for network with D; = 3-dimensional input x, D, = 2-
dimensional output y, and K = 3 hidden layers hy, hy, and hs of dimensions
Dy =4, Dy = 2, and D3 = 3 respectively. The weights are stored in matrices
Q. that pre-multiply the activations from the preceding layer to create the pre-
activations at the subsequent layer. For example, the weight matrix €2; that
computes the pre-activations at ho from the activations at h; has dimension
2 x 4. It is applied to the four hidden units in layer one and creates the inputs to
the two hidden units at layer two. The biases are stored in vectors 3, and have
the dimension of the layer into which they feed. For example, the bias vector 3,
is length three because layer hs contains three hidden units.

Matrix notation

We have seen that a deep neural network consists of linear transformations alternating
with activation functions. We could equivalently describe equations 4.7-4.9 in matrix
notation as:

h1 010 011
ho| =a | [0 + 021 2|, (4.11)
h3 B30 B31
Ry P10 Y11 Y12 Yiz| [
s =a | [tao| + |Y21 W22 tbes| |h2| |, (4.12)
3)30 Y31 P32 sz |
and
1
Y=o+ (00 dh oh] |hh), (4.13)

3

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.4.1

4.5

4.5 Shallow vs. deep neural networks 49

or even more compactly in matrix notation as:

h = a6+ 6z
h' = aj[y,+ Ph)
y = ¢p+o'h, (4.14)

where, in each case, the function afe] applies the activation function separately to every
element of its vector input.

General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hy, the vector of biases
(intercepts) that contribute to hidden layer k+1 as 3, and the weights (slopes) that
are applied to the k*" layer and contribute to the (k+1)" layer as €. A general deep
network y = {[x, ¢] with K layers can now be written as:

h; = a[B)+ Qox]
hy, = a[8, +Qhy]
hy = a[f3; + Qahy
hg = alBg_; +Qx_1hg_1]
y = PBg+Qxhg. (4.15)

The parameters ¢ of this model comprise all of these weight matrices and bias vectors
¢ = {Bs: Qk}i(:O'

If the k' layer has Dy hidden units, then the bias vector 3, _; will be of size Dj.
The last bias vector By has the size D, of the output. The first weight matrix ¢ has
size D1 x D; where D; is the size of the input. The last weight matrix Qx is D, X D,
and the remaining matrices Qj are D1 X Dy (figure 4.6).

We can equivalently write the network as a single function:

Yy = Bx + Qra B +Qx_al... By + Qa8 + Qa8 + Qox]] ..] .
(4.16)

Shallow vs. deep neural networks

Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 4.3
Deep networks

Problems 4.3-4.6

4.5.1

Problem 4.7

4.5.2

Problems 4.8-4.11

4.5.3

4.5.4

50 4 Deep neural networks

Ability to approximate different functions

In section 3.2, we argued that shallow neural networks with enough capacity (hidden
units) could model any continuous function arbitrarily closely. In this chapter, we saw
that a deep network with two hidden layers could represent the composition of two
shallow networks. If the second of these networks computes the identity function, then
this deep network replicates a single shallow network. Hence, it can also approximate
any continuous function arbitrarily closely given sufficient capacity.

Number of linear regions per parameter

A shallow network with one input, one output, and D > 2 hidden units can create up
to D + 1 linear regions and is defined by 3D + 1 parameters. A deep network with one
input, one output, and K layers of D > 2 hidden units can create a function with up to
(D + 1)¥ linear regions using 3D + 1 + (K — 1)D(D + 1) parameters.

Figure 4.7a shows how the maximum number of linear regions increases as a function
of the number of parameters for networks mapping scalar input z to scalar output y.
Deep neural networks create much more complex functions for a fixed parameter budget.
This effect is magnified as the number of input dimensions D; increases (figure 4.7b),
although computing the maximum number of regions is less straightforward.

This seems attractive, but the flexibility of the functions is still limited by the number
of parameters. Deep networks can create extremely large numbers of linear regions, but
these contain complex dependencies and symmetries. We saw some of these when we
considered deep networks as “folding” the input space (figure 4.3). So, it’s not clear that
the greater number of regions is an advantage unless (i) there are similar symmetries in
the real-world functions that we wish to approximate or (ii) we have reason to believe
that the mapping from input to output really does involve a composition of simpler
functions.

Depth efficiency

Both deep and shallow networks can model arbitrary functions, but some functions
can be approximated much more efficiently with deep networks. Functions have been
identified that require a shallow network with exponentially more hidden units to achieve
an equivalent approximation to that of a deep network. This phenomenon is referred to
as the depth efficiency of neural networks. This property is also attractive, but it’s not
clear that the real-world functions that we want to approximate fall into this category.

Large, structured inputs

We have discussed fully connected networks where every element of each layer contributes
to every element of the subsequent one. However, these are not practical for large,

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.5.5

4.5 Shallow vs. deep neural networks 51

a) Input dimension D; =1 b) . Input dimension D; = 10
2 @ K=41 ¢
& 10 K=3 o @
— —_
HC_) K=2 '46 10 K=4
—_ —_
8y K=1 g -
g g -/—f K=2
= = e
10° 10° . K =1
500 1000 0 10000 20000
Number of parameters Number of parameters

Figure 4.7 The maximum number of linear regions for neural networks increases
rapidly with the network depth. a) Network with D; = 1 input. Each curve rep-
resents a fixed number of hidden layers K, as we vary the number of hidden units
D per layer. For a fixed parameter budget (horizontal position), deeper networks
produce more linear regions than shallower ones. A network with K = 5 layers
and D = 10 hidden units per layer has 471 parameters (highlighted point) and
can produce 161,051 regions. b) Network with D; = 10 inputs. Each subsequent
point along a curve represents ten hidden units. Here, a model with K =5 layers
and D = 50 hidden units per layer has 10,801 parameters (highlighted point) and
can create more than 10*3* linear regions.

structured inputs like images, where the input might comprise ~ 108 pixels. The number
of parameters would be prohibitive, and moreover, we want different parts of the image
to be processed similarly; there is no point in independently learning to recognize the
same object at every possible position in the image.

The solution is to process local image regions in parallel and then gradually integrate
information from increasingly large regions. This kind of local-to-global processing is
difficult to specify without using multiple layers (see chapter 10).

Training and generalization

A further possible advantage of deep networks over shallow networks is their ease of
fitting; it is usually easier to train moderately deep networks than to train shallow ones
(see figure 20.2). It may be that over-parameterized deep models have a large family of
roughly equivalent solutions that are easy to find. However, as we add more hidden layers,
training becomes more difficult again, although many methods have been developed to
mitigate this problem (see chapter 11).

Deep neural networks also seem to generalize to new data better than shallow ones.
In practice, the best results for most tasks have been achieved using networks with tens
or hundreds of layers. Neither of these phenomena are well understood, and we return
to them in chapter 20.

Draft: please send errata to udlbookmail@gmail.com.

4.6

52 4 Deep neural networks

Summary

In this chapter, we first considered what happens when we compose two shallow networks.
We argued that the first network “folds” the input space, and the second network then
applies a piecewise linear function. The effects of the second network are duplicated
where the input space is folded onto itself.

We then showed that this composition of shallow networks is a special case of a deep
network with two layers. We interpreted the RelLU functions in each layer as clipping
the input functions in multiple places and creating more “joints” in the output function.
We introduced the idea of hyperparameters, which for the networks we’ve seen so far,
comprise the number of hidden layers and the number of hidden units in each.

Finally, we compared shallow and deep networks. We saw that (i) both networks
can approximate any function given enough capacity, (ii) deep networks produce many
more linear regions per parameter, (iii) some functions can be approximated much more
efficiently by deep networks, (iv) large, structured inputs like images are best processed
in multiple stages, and (v) in practice, the best results for most tasks are achieved using
deep networks with many layers.

Now that we understand deep and shallow network models, we turn our attention to
training them. In the next chapter, we discuss loss functions. For any given parameter
values ¢, the loss function returns a single number that indicates the mismatch between
the model outputs and the ground truth predictions for a training dataset. In chapters 6
and 7, we deal with the training process itself, in which we seek the parameter values
that minimize this loss.

Notes

Deep learning: 1t has long been understood that it is possible to build more complex functions
by composing shallow neural networks or developing networks with more than one hidden layer.
Indeed, the term “deep learning” was first used by Dechter (1986). However, interest was limited
due to practical concerns; it was not possible to train such networks well. The modern era of
deep learning was kick-started by startling improvements in image classification reported by
Krizhevsky et al. (2012). This sudden progress was arguably due to the confluence of four
factors: larger training datasets, improved processing power for training, the use of the ReL.U
activation function, and the use of stochastic gradient descent (see chapter 6). LeCun et al.
(2015) present an overview of early advances in the modern era of deep learning.

Number of linear regions: For deep networks using a total of D hidden units with ReL.U
activations, the upper bound on the number of regions is 27 (Montufar et al., 2014). The
same authors show that a deep ReLU network with D;-dimensional input and K layers, each
containing D > D; hidden units, has O ((D/Di)(K_l)DiDDi) linear regions. Monttfar (2017),
Arora et al. (2016) and Serra et al. (2018) all provide tighter upper bounds that consider the
possibility that each layer has different numbers of hidden units. Serra et al. (2018) provide
an algorithm that counts the number of linear regions in a neural network, although it is only
practical for very small networks.

If the number of hidden units D in each of the K layers is the same, and D is an integer
multiple of the input dimensionality D;, then the maximum number of linear regions /N, can be

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 53

computed exactly and is:

NT—IE(ZH)Dii(?). (4.17)

=0

The first term in this expression corresponds to the first K — 1 layers of the network, which can
be thought of as repeatedly folding the input space. However, we now need to devote D/D;
hidden units to each input dimension to create these folds. The last term in this equation (a
sum of binomial coefficients) is the number of regions that a shallow network can create and is
attributable to the last layer. For further information, consult Montufar et al. (2014), Pascanu
et al. (2013), and Montifar (2017).

Universal approximation theorem: We argued in section 4.5.1 that if the layers of a deep
network have enough hidden units, then the width version of the universal approximation the-
orem applies: there exists a network that can approximate any given continuous function on a
compact subset of R”? to arbitrary accuracy. Lu et al. (2017) proved that there exists a network
with ReLU activation functions and at least D; + 4 hidden units in each layer can approximate
any specified D;-dimensional Lebesgue integrable function to arbitrary accuracy given enough
layers. This is known as the depth version of the universal approximation theorem.

Depth efficiency: Several results show that there are functions that can be realized by deep
networks but not by any shallow network whose capacity is bounded above exponentially. In
other words, it would take an exponentially larger number of units in a shallow network to
describe these functions accurately. This is known as the depth efficiency of neural networks.

Telgarsky (2016) shows that for any integer k, it is possible to construct networks with one input,
one output, and O[k®] layers of constant width, which cannot be realized with O[k] layers and
less than 2% width. Perhaps surprisingly, Eldan & Shamir (2016) showed that when there are
multivariate inputs, there is a three-layer network that cannot be realized by any two-layer
network if the capacity is sub-exponential in the input dimension. Cohen et al. (2016), Safran
& Shamir (2017), and Poggio et al. (2017) also demonstrate functions that deep networks can
approximate efficiently, but shallow ones cannot. Liang & Srikant (2016) show that for a broad
class of functions, including univariate functions, shallow networks require exponentially more
hidden units than deep networks for a given upper bound on the approximation error.

Width efficiency: Lu et al. (2017) investigate whether there are wide shallow networks (i.e.,
shallow networks with lots of hidden units) that cannot be realized by narrow networks whose
depth is not substantially larger. They show that there exist classes of wide, shallow networks
that can only be expressed by narrow networks with polynomial depth. This is known as the
width efficiency of neural networks. This polynomial lower bound on width is less restrictive
than the exponential lower bound on depth, suggesting that depth is more important. Vardi
et al. (2022) subsequently showed that the price for making the width small is only a linear
increase in the network depth for networks with ReLLU activations.

Problems

Problem 4.1* Consider composing the two neural networks in figure 4.8. Draw a plot of the
relationship between the input z and output y' for z € [—1,1].

Problem 4.2 Identify the four hyperparameters in figure 4.6.

Problem 4.3 Using the non-negative homogeneity property of the ReLU function (see prob-
lem 3.5), show that:

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.2
Binomial coefficient

54 4 Deep neural networks

a)
@<V%/\y/\%/ !
c)

1.0 1.0
= - \
=)
>
2 0.0 200
5 5
© o
1Tb—— B —
-1.0 0'0 1.0 -1.0 0'0 10
Input, Input, y

Figure 4.8 Composition of two networks for problem 4.1. a) The output y of the
first network becomes the input to the second. b) The first network computes
this function with output values y € [—1,1]. c) The second network computes
this function on the input range y € [—1, 1].

1 1
ReLU [61+)\1 - ReLU [By+ Ao - Qox]} = XoA1 - ReLU {ﬁ,ﬂl—kﬂlReLU [A—Bo—f—ﬂoxﬂ :
01 0
(4.18)
where Ao and A1 are non-negative scalars. From this, we see that the weight matrices can be
rescaled by any magnitude as long as the biases are also adjusted, and the scale factors can be
re-applied at the end of the network.

Problem 4.4 Write out the equations for a deep neural network that takes D; = 5 inputs, D, = 4
outputs and has three hidden layers of sizes D1 = 20, D2 = 10, and D3 = 7, respectively, in
both the forms of equations 4.15 and 4.16. What are the sizes of each weight matrix €, and

bias vector 3,7

Problem 4.5 Consider a deep neural network with D; = 5 inputs, D, = 1 output, and K = 20
hidden layers containing D = 30 hidden units each. What is the depth of this network? What

is the width?

Problem 4.6 Consider a network with D; = 1 input, D, = 1 output, and K = 10 layers, with
D = 10 hidden units in each. Would the number of weights increase more if we increased the

depth by one or the width by one? Provide your reasoning.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 55

Problem 4.7 Choose values for the parameters ¢ = {¢o, ¢1, 2, ¢3, 010,011, 020, 021,030,031 } for
the shallow neural network in equation 3.1 that will define an identity function over a finite
range = € [a, b].

Problem 4.8 Figure 4.9 shows the activations in the three hidden units of a shallow network
(as in figure 3.3). The slopes in the hidden units are 1.0, 1.0, and -1.0, respectively, and the
“joints” in the hidden units are at positions 1/6, 2/6, and 4/6. Find values of ¢o, ¢1, 2, and ¢3
that will combine the hidden unit activations as ¢o + ¢1h1 + ¢2ha + ¢d3hs to create a function
with four linear regions that oscillate between output values of zero and one. The slope of the
leftmost region should be positive, the next one negative, and so on. How many linear regions
will we create if we compose this network with itself? How many will we create if we compose
it with itself K times?

Problem 4.9" Following problem 4.8, is it possible to create a function with three linear regions
that oscillates back and forth between output values of zero and one using a shallow network
with two hidden units? Is it possible to create a function with five linear regions that oscillates
in the same way using a shallow network with four hidden units?

a) b) c)

1.0
. \
S0
3
(@]
10 hl = 8[910 —+ 911%] hg = 3[920 + 921%] h3 = 8[930 + 031%]
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, Input, Input,

Figure 4.9 Hidden unit activations for problem 4.8. a) First hidden unit has a
joint at position z = 1/6 and a slope of one in the active region. b) Second hidden
unit has a joint at position x = 2/6 and a slope of one in the active region. c)
Third hidden unit has a joint at position = 4/6 and a slope of minus one in the
active region.

Problem 4.10 Consider a deep neural network with a single input, a single output, and K
hidden layers, each of which contains D hidden units. Show that this network will have a total
of 3D + 1+ (K —1)D(D + 1) parameters.

Problem 4.11" Consider two neural networks that map a scalar input x to a scalar output y.
The first network is shallow and has D = 95 hidden units. The second is deep and has K = 10
layers, each containing D = 5 hidden units. How many parameters does each network have?
How many linear regions can each network make? Which would run faster?

Draft: please send errata to udlbookmail@gmail.com.

Appendix A
Number sets

Appendix C.1.3
Conditional
probability

5.1

Chapter 5

Loss functions

The last three chapters described linear regression, shallow neural networks, and deep
neural networks. Each represents a family of functions that map input to output, where
the particular member of the family is determined by the model parameters ¢p. When
we train these models, we seek the parameters that produce the best possible mapping
from input to output for the task we are considering. This chapter defines what is meant
by the “best possible” mapping.

That definition requires a training dataset {x;,y;} of input/output pairs. A loss
function or cost function L[¢p] returns a single number that describes the mismatch
between the model predictions fx;, ¢] and their corresponding ground-truth outputs y;.
During training, we seek parameter values ¢ that minimize the loss and hence map the
training inputs to the outputs as closely as possible. We saw one example of a loss
function in chapter 2; the least squares loss function is suitable for univariate regression
problems for which the target is a real number y € R. It computes the sum of the squares
of the deviations between the model predictions fx;, ¢] and the true values y;.

This chapter provides a framework that both justifies the choice of the least squares
criterion for real-valued outputs and allows us to build loss functions for other prediction
types. We consider binary classification, where the prediction y € {0,1} is one of two
categories, multiclass classification, where the prediction y € {1,2,..., K} is one of K
categories, and more complex cases. In the following two chapters, we address model
training, where the goal is to find the parameter values that minimize these loss functions.

Maximum likelihood

In this section, we develop a recipe for constructing loss functions. Consider a model
f[x, ¢] with parameters ¢ that computes an output from input x. Until now, we have
implied that the model directly computes a prediction y. We now shift perspective and
consider the model as computing a conditional probability distribution Pr(y|x) over
possible outputs y given input x. The loss encourages each training output y; to have
a high probability under the distribution Pr(y;|x;) computed from the corresponding
input x; (figure 5.1).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.1 Maximum likelihood

57

a)2.0 T T [}
.) . o
3 ° ‘o o0
> T T A A
4_,- ! ’o (<] e
3 ° ‘:'O °
& o © :
= LA :
O leo :
° : :
2.0 : I)
3 Input, x]
2.0 60— P S—
Y Y
2.0
Pr(y|lz=2) Pr(ylz=T)
<)

9 : e)

8 i °-0-0 ‘ °
7 e * o ©
o6 o e °)

c b R ° 1 oo
24 oo -0 o -0 “e0
Ssfee e tooene

24{-e@ ‘0@ o -0 : o (<}

1 : ° e ©-©

0 o oo :o‘

0 3 Input, z 10
D S D
9 9
8 8
7 7
6 6
Y5 Y5
4 4
3 3
2 2
1 1
0 0
Pr(ylz=2) Pr(ylz=7)

b)
44 - @@ - @- - @@ ° w
= :
- 3 oo ©000-0 00 -00-0
[:
0
© :
o 2 “-nooo: o -o
1 00:-e-0 0@ - @ 0
0 3 Input, x 0
‘ ‘
4 4
3 3
Yy Y
2 2
1 1
Pr(ylz=2) Pr(ylz="T)
d)
. o T o°
: ° :
21 s
g e | :
° ' '
FEAE s
= ° L4 o °
o AT
; ° o8° ‘e ©o
‘ ° ‘ °
—r -] ° ; °
0 3 Input, z 0
o o———— T
Yy Yy
C PrGle=2) Pr(yfz=7)

Figure 5.1 Predicting distributions over outputs. a) Regression task, where the
goal is to predict a real-valued output y from the input x based on training data
{zi,y:} (orange points). For each input value z, the machine learning model pre-
dicts a distribution Pr(y|x) over the output y € R (cyan curves show distributions
for z=2.0 and £ ="7.0). The loss function aims to maximize the probability of
the observed training outputs y; under the distribution predicted from the corre-
sponding inputs z;. b) To predict discrete classes y € {1,2,3,4} in a classification
task, we use a discrete probability distribution, so the model predicts a different
histogram over the four possible values of y; for each value of z;. ¢) To predict
counts y € {0,1,2,...} and d) direction y € (—m, 7|, we use distributions defined
over positive integers and circular domains, respectively.

Draft: please send errata to udlbookmail@gmail.com.

5.1.1

5.1.2

Appendix C.1.5
Independence

58 5 Loss functions

Computing a distribution over outputs

This raises the question of exactly how a model f[x, ¢] can be adapted to compute a
probability distribution. The solution is simple. First, we choose a parametric distribu-
tion Pr(y|@) defined on the output domain y. Then we use the network to compute one
or more of the parameters @ of this distribution.

For example, suppose the prediction domain is the set of real numbers, so y € R.
Here, we might choose the univariate normal distribution, which is defined on R. This
distribution is defined by the mean p and variance 0%, so @ = {u,0?}. The machine
learning model might predict the mean u, and the variance o2 could be treated as an
unknown constant.

Maximum likelihood criterion

The model now computes different distribution parameters 8; = f[x;, ¢| for each training
input x;. FEach observed training output y; should have high probability under its
corresponding distribution Pr(y;|0;). Hence, we choose the model parameters ¢ so that
they maximize the combined probability across all I training examples:

I
¢ = argmax HPT(yi|xi)]
¢ L2

I
= argmax HPr(yi|0i)]
i=1

¢
I
= argglax HPr(yi|f[xi,¢])] . (5.1)
Li=1

The combined probability term is the likelithood of the parameters, and hence equation 5.1
is known as the mazimum likelihood criterion.

Here we are implicitly making two assumptions. First, we assume that the data
are identically distributed (the form of the probability distribution over the outputs y;
is the same for each data point). Second, we assume that the conditional distribu-
tions Pr(y;|x;) of the output given the input are independent, so the total likelihood of
the training data decomposes as:

I
P?"(yl,yg,...,y]‘Xl,XQ,...,X]) - HPr(yl|xz) (52)
=1

In other words, we assume the data are independent and identically distributed (i.i.d.).

LA conditional probability Pr(z|i)) can be considered in two ways. As a function of z, it is a
probability distribution that sums to one. As a function of v, it is known as a likelihood and does not
generally sum to one.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.1.3

5.1 Maximum likelihood 59

a) b) c)

5 10 3
= —)
—_— N
o0 —.5 a0
o Q0 Y0}
— [©)

el
5 0 - 1
0 5 10 -10 0 10 10 0 10
V4 V4 z

Figure 5.2 The log transform. a) The log function is monotonically increasing.
If 2> 2/, then log[z] >log[2']. It follows that the maximum of any function g[z]
will be at the same position as the maximum of log[g[z]]. b) A function g[z]. ¢)
The logarithm of this function log[g[z]]. All positions on g[z] with a positive slope
retain a positive slope after the log transform, and those with a negative slope
retain a negative slope. The position of the maximum remains the same.

Maximizing log-likelihood

The maximum likelihood criterion (equation 5.1) is not very practical. Each term
Pr(y;|f[x;, ¢]) can be small, so the product of many of these terms can be tiny. It
may be difficult to represent this quantity with finite precision arithmetic. Fortunately,
we can equivalently maximize the logarithm of the likelihood:

I
$ = argmax HPr<yi|f[xi,¢]>]

¢ =1
11 Pr(yilfixi, ¢])]]

= argmax |log
i=1

¢

T
= arg(r;lax ; log {Pr(yi|f[xi,¢])” . (5.3)

This log-likelihood criterion is equivalent because the logarithm is a monotonically in-
creasing function: if z > 2/, then log[z] > log[2’] and vice versa (figure 5.2). It follows
that when we change the model parameters ¢ to improve the log-likelihood criterion, we
also improve the original maximum likelihood criterion. It also follows that the overall
maxima of the two criteria must be in the same place, so the best model parameters éS
are the same in both cases. However, the log-likelihood criterion has the practical ad-
vantage of using a sum of terms, not a product, so representing it with finite precision
isn’t problematic.

Draft: please send errata to udlbookmail@gmail.com.

60 5 Loss functions

5.1.4 Minimizing negative log-likelihood

Finally, we note that, by convention, model fitting problems are framed in terms of
minimizing a loss. To convert the maximum log-likelihood criterion to a minimization
problem, we multiply by minus one, which gives us the negative log-likelihood criterion:

¢ = arg;)nin [_Zlog{Pr(Yif[Xiad)])H
- arggﬁn[L[q&]}, (5.4)

which is what forms the final loss function L[¢].

5.1.5 Inference

The network no longer directly predicts the outputs y but instead determines a proba-
bility distribution over y. When we perform inference, we often want a point estimate
rather than a distribution, so we return the maximum of the distribution:

y= arg}r,nax [Pr(y|f[x7 @) (5.5)

It is usually possible to find an expression for this in terms of the distribution parame-
ters @ predicted by the model. For example, in the univariate normal distribution, the
maximum occurs at the mean pu.

5.2 Recipe for constructing loss functions

The recipe for constructing loss functions for training data {x;,y;} using the maximum
likelihood approach is hence:

1. Choose a suitable probability distribution Pr(y|@) defined over the domain of the
predictions y with distribution parameters 6.

2. Set the machine learning model f[x, ¢| to predict one or more of these parameters,
so 0 = f[x, @] and Pr(y|0) = Pr(y|f[x, ¢]).

3. To train the model, find the network parameters (}b that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

¢ = arggﬁn [L[qb}] = arg;nin l— sz; log [Pr(yﬂf[xi, (ﬂ)]] . (5.6)

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x, ¢]) or the maximum of this distribution.

We devote most of the rest of this chapter to constructing loss functions for common
prediction types using this recipe.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.3

5.3 Example 1: univariate regression 61

E Figure 5.3 The univariate normal distri-

1.9 bution (also known as the Gaussian dis-
—-0.3 tribution) is defined on the real line z €
R and has parameters pu and o®. The
mean p determines the position of the
peak. The positive root of the vari-
ance o (the standard deviation) de-
termines the width of the distribution.
Since the total probability density sums
to one, the peak becomes higher as the
variance decreases and the distribution
becomes narrower.

Example 1: univariate regression

We start by considering univariate regression models. Here the goal is to predict a single
scalar output y € R from input x using a model {[x, ¢| with parameters ¢. Following
the recipe, we choose a probability distribution over the output domain y. We select the
univariate normal (figure 5.3), which is defined over y € R. This distribution has two
parameters (mean p and variance 02) and has a probability density function:

(y — u)Q} . (5.7)

1
Pr(ylp,o®) = V2ol exp [_W

Second, we set the machine learning model {[x, ¢] to compute one or more of the param-
eters of this distribution. Here, we just compute the mean so p = {[x, ¢|:

Pr(ylflx, ¢],0%) =

(y B f[X, ¢])2:|) (58)

exp [952

To?

We aim to find the parameters ¢ that make the training data {x;,y;} most probable
under this distribution (figure 5.4). To accomplish this, we choose a loss function L[¢]
based on the negative log-likelihood:

1

Lip] = —Zlog [Pr(yi|flx;, ¢],0%)]

i=1

_ _ilog{ ! exp[_(yi‘f[WH. (5.9)

V2mo? 202

When we train the model, we seek parameters dA) that minimize this loss.

Draft: please send errata to udlbookmail@gmail.com.

5.3.1

Notebook 5.1
Least squares

loss

5.3.2

5.3.3

62 5 Loss functions

Least squares loss function

Now let’s perform some algebraic manipulations on the loss function. We seek:

¢ = argmin —Zlog{
¢ L =1

wJMMqH

202

1
= argmin |[— log { }
o | ; V2mo? 202

I
_ - (yi — flxi, @)
= arg;nln _— lzzl Sy E—]
rrI
= arginin > (i f[Xi7¢])2‘| ; (5.10)
Li=1

where we have removed the first term between the second and third lines because it does
not depend on ¢. We have removed the denominator between the third and fourth lines,
as this is just a constant scaling factor that does not affect the position of the minimum.

The result of these manipulations is the least squares loss function that we originally
introduced when we discussed linear regression in chapter 2:

I

Ll = (v — fixi, ¢])*. (5.11)
i=1
We see that the least squares loss function follows naturally from the assumptions that
the prediction errors are (i) independent and (ii) drawn from a normal distribution with
mean p = {[x;, ¢] (figure 5.4).

Inference
The network no longer directly predicts y but instead predicts the mean pu = [x, ¢] of

the normal distribution over y. When we perform inference, we usually want a single
“best” point estimate 7, so we take the maximum of the predicted distribution:

§ = argmax | Pr(y|f[x, ¢])| . (5.12)
y
For the univariate normal, the maximum position is determined by the mean parameter

(figure 5.3). This is precisely what the model computed, so § = {[x, ¢].

Estimating variance

To formulate the least squares loss function, we assumed that the network predicted the
mean of a normal distribution. The final expression in equation 5.11 (perhaps surpris-

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.3 Example 1: univariate regression

63

3)20 iy — flzs, @])? = 0.19 b)20 S (yi — i, ¢])? = 10.22
(@)
a [
3101 104 ®
3
(@)
0.0 —_— 0.0 ——————
0.0 1.0 20 00 10 2.0
Input, = Input, =
C)2 o= > log [Pr(yilflzs, ¢, 0%)] = —6.57 O')2 o= 3 log [Pr(yilflzi, @], 0%)] =497.37
o / (¢}
N / |
§_ 1.0-/./ 1.0)
5
o <
Pr(y;|f[1.19, ¢], 02) -
Pr(y;|f]0.46, ¢], o?)
0.0 . 0.0 .
0.0 1.0 20 0.0 10 2.0
Input, = Input, =

Figure 5.4 Equivalence of least squares and maximum likelihood loss for the
normal distribution. a) Consider the linear model from figure 2.2. The least
squares criterion minimizes the sum of the squares of the deviations (dashed lines)
between the model prediction f[z;, ¢] (green line) and the true output values y;
(orange points). Here the fit is good, so these deviations are small (e.g., for the
two highlighted points). b) For these parameters, the fit is bad, and the squared
deviations are large. c¢) The least squares criterion follows from the assumption
that the model predicts the mean of a normal distribution over the outputs and
that we maximize the probability. For the first case, the model fits well, so the
probability Pr(y;|z;) of the data (horizontal orange dashed lines) is large (and
the negative log probability is small). d) For the second case, the model fits badly,
so the probability is small and the negative log probability is large.

Draft: please send errata to udlbookmail@gmail.com.

5.3.4

54

64 5 Loss functions

ingly) does not depend on the variance o2. However, there is nothing to stop us from
treating o2 as a parameter of the model and minimizing equation 5.9 with respect to

both the model parameters ¢ and the distribution variance o?:

$,62 = arggin l—;log [\/2;? exp {—M’“Wm . (5.13)

In inference, the model predicts the mean p = f[x, ¢p] from the input, and we learned the
variance 62 during the training process. The former is the best prediction. The latter
tells us about the uncertainty of the prediction.

Heteroscedastic regression

The model above assumes that the variance of the data is constant everywhere. However,
this might be unrealistic. When the uncertainty of the model varies as a function of the
input data, we refer to this as heteroscedastic (as opposed to homoscedastic, where the
uncertainty is constant).

A simple way to model this is to train a neural network fx, ¢] that computes both
the mean and the variance. For example, consider a shallow network with two outputs.
We denote the first output as fi[x, ¢p] and use this to predict the mean, and we denote
the second output as fa[x, ¢] and use it to predict the variance.

There is one complication; the variance must be positive, but we can’t guarantee
that the network will always produce a positive output. To ensure that the computed
variance is positive, we pass the second network output through a function that maps
an arbitrary value to a positive one. A suitable choice is the squaring function, giving:

po= filx, @]
02 = f2 [Xa ¢]27 (514)
which results in the loss function:
I
/ i 1 (yi — f1]xi, P])?
= argmin | — lo _) 515
¢ g¢ [; & [27fs[x;, ¢]2] 2f5[x;, @)? ()

Homoscedastic and heteroscedastic models are compared in figure 5.5.

Example 2: binary classification

In binary classification, the goal is to assign the data x to one of two discrete classes y €
{0,1}. In this context, we refer to y as a label. Examples of binary classification include
(i) predicting whether a restaurant review is positive (y = 1) or negative (y = 0) from
text data x and (ii) predicting whether a tumor is present (y = 1) or absent (y = 0)
from an MRI scan x.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.4 Example 2: binary classification

1
+20
1.0 -
0.0 10 2.0
Input, z
d) o
>
o
200
5
o 2
+20
1.0 -
0.0 10 2.0
Input, z

Figure 5.5 Homoscedastic vs. heteroscedastic regression. a) A shallow neural
network for homoscedastic regression predicts just the mean p of the output
distribution from the input z. b) The result is that while the mean (blue line)
is a piecewise linear function of the input z, the variance is constant everywhere
(arrows and gray region show +2 standard deviations). c) A shallow neural
network for heteroscedastic regression also predicts the variance ¢® (or, more
precisely, computes its square root, which we then square). d) The standard
deviation now also becomes a piecewise linear function of the input x.

10 Figure 5.6 Bernoulli distribution. The
Bernoulli distribution is defined on the
domain z € {0,1} and has a single pa-
rameter A that denotes the probability
of observing z = 1. It follows that the
probability of observing z =0is 1 — \.

Draft: please send errata to udlbookmail@gmail.com.

Problem 5.1

Notebook 5.2
Binary
cross-entropy loss

Problem 5.2

66 5 Loss functions

Figure 5.7 Logistic sigmoid function. 1

This function maps the real line z € R 1
R to numbers between zero and one, 1+exp[—z]
so sig[z] € [0,1]. An input of 0 is mapped
to 0.5. Negative inputs are mapped to =)
numbers below 0.5, and positive inputs .20]
to numbers above 0.5. w

5.0 0.0 5.0

Once again, we follow the recipe from section 5.2 to construct the loss function. First,
we choose a probability distribution over the output space y € {0,1}. A suitable choice
is the Bernoulli distribution, which is defined on the domain {0,1}. This has a single
parameter A € [0, 1] that represents the probability that y takes the value one (figure 5.6):

1—A =0
Pr(ylA) = { e (5.16)
A y=1
which can equivalently be written as:
Pr(y|\) = (1 = \)'¥ . \Y. (5.17)

Second, we set the machine learning model f[x, ¢] to predict the single distribution
parameter \. However, \ can only take values in the range [0, 1], and we cannot guarantee
that the network output will lie in this range. Consequently, we pass the network output
through a function that maps the real numbers R to [0,1]. A suitable function is the
logistic sigmoid (figure 5.7):

i = ! 5.18
Slg[Z] - 1—|—exp[—z] . (.)

Hence, we predict the distribution parameter as A = sig[f[x, ¢]]. The likelihood is now:

Pr(y|x) = (1 — sig[f[x, ¢]]))* ¥ - sig[f[x, ¢]]Y. (5.19)
This is depicted in figure 5.8 for a shallow neural network model. The loss function is
the negative log-likelihood of the training set:

I
L[¢] = D" —(1 - yi) log |1 — sigltlxi,] | — v log siglfix,.] (5.20)
i=1

For reasons to be explained in section 5.7, this is known as the binary cross-entropy loss.
The transformed model output sig[f[x, ¢]] predicts the parameter A of the Bernoulli
distribution. This represents the probability that y = 1, and it follows that 1 — A
represents the probability that y = 0. When we perform inference, we may want a point

estimate of y, so we set y = 1 if A > 0.5 and y = 0 otherwise.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.5

5.5 Example 3: multiclass classification 67

a) 4.0 H H H H b) C) 1.0 >
5 =
500 \?0-5
- A
sig [fz, @] 1f/\
“+05% : : 1.0: : 20 0%% : 0 —2
Input, = Input, =

Figure 5.8 Binary classification model. a) The network output is a piecewise
linear function that can take arbitrary real values. b) This is transformed by the
logistic sigmoid function, which compresses these values to the range [0,1]. ¢)
The transformed output predicts the probability A that y = 1 (solid line). The
probability that y = 0 is hence 1 — A (dashed line). For any fixed z (vertical
slice), we retrieve the two values of a Bernoulli distribution similar to that in
figure 5.6. The loss function favors model parameters that produce large values
of A at positions z; that are associated with positive examples y; = 1 and small
values of \ at positions associated with negative examples y; = 0.

0.5

Figure 5.9 Categorical distribution. The
categorical distribution assigns probabil-
ities to K >2 categories, with associated
probabilities A1, A2, ..., A\x. Here, there
are five categories, so K = 5. To ensure
that this is a valid probability distribu-
tion, each parameter A\x must lie in the
range [0, 1], and all K parameters must
sum to one.

Example 3: multiclass classification

The goal of multiclass classification is to assign an input data example x to one of K > 2
classes, soy € {1,2,..., K}. Real-world examples include (i) predicting which of K = 10
digits y is present in an image x of a handwritten number and (ii) predicting which of K
possible words y follows an incomplete sentence x.

We once more follow the recipe from section 5.2. We first choose a distribution
over the prediction space y. In this case, we have y € {1,2,..., K}, so we choose
the categorical distribution (figure 5.9), which is defined on this domain. This has K
parameters A1, Ao, ..., Ak, which determine the probability of each category:

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.1.3
Exponential
function

68 5 Loss functions

b) 1.0
A1
=
<
Ilos
=
~
A : :
: : : d P A3 :
5.0 - - - - - - - - - 0.0 - - - - - - - = -
0.0 10 2.0 0.0 10 2.0
Input, = softmax [f[x, @] Input, =

Figure 5.10 Multiclass classification for K =3 classes. a) The network has three
piecewise linear outputs, which can take arbitrary values. b) After the softmax
function, these outputs are constrained to be non-negative and sum to one. Hence,
for a given input x, we compute valid parameters for the categorical distribution:
any vertical slice of this plot produces three values sum to one and would form
the heights of the bars in a categorical distribution similar to figure 5.9.

Pr(y =k) = . (5.21)

The parameters are constrained to take values between zero and one, and they must
collectively sum to one to ensure a valid probability distribution.

Then we use a network f[x, ¢] with K outputs to compute these K parameters from
the input x. Unfortunately, the network outputs will not necessarily obey the afore-
mentioned constraints. Consequently, we pass the K outputs of the network through a
function that ensures these constraints are respected. A suitable choice is the softmax
function (figure 5.10). This takes an arbitrary vector of length K and returns a vector
of the same length but where the elements are now in the range [0, 1] and sum to one.
The k' output of the softmax function is:

exp|z]

softmaxy[z] = —2521 explon] ,

(5.22)

where the exponential functions ensure positivity, and the sum in the denominator en-
sures that the K numbers sum to one.

The likelihood that input x has label y (figure 5.10) is hence:

Pr(y = k|x) = softmaxy, [f[x, ¢]] (5.23)

The loss function is the negative log-likelihood of the training data:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.5.1

5.6

5.6 Multiple outputs 69

L] = - ZI: log [softmaxyi {f [xi, ¢>]H
= - ZI: (fy [xi, @] —log [XK: exp [fi [xi,cb]]D ; (5.24)
i=1 k=1

where f[x, @] denotes the k' output of the neural network. For reasons that will be
explained in section 5.7, this is known as the multiclass cross-entropy loss.

The transformed model output represents a categorical distribution over possible
classes y € {1,2,..., K'}. For a point estimate, we take the most probable category § =
argmax, [Pr(y = k|f[x, ¢])]. This corresponds to whichever curve is highest for that
value of x in figure 5.10.

Predicting other data types

In this chapter, we have focused on regression and classification because these problems
are widespread. However, to make different types of predictions, we simply choose an
appropriate distribution over that domain and apply the recipe in section 5.2. Figure 5.11
enumerates a series of probability distributions and their prediction domains. Some of
these are explored in the problems at the end of the chapter.

Multiple outputs

Often, we wish to make more than one prediction with the same model, so the target
output y is a vector. For example, we might want to predict a molecule’s melting
and boiling point (a multivariate regression problem, figure 1.2b) or the object class at
every point in an image (a multivariate classification problem, figure 1.4a). While it
is possible to define multivariate probability distributions and use a neural network to
model their parameters as a function of the input, it is more usual to treat each prediction
as independent.

Independence implies that we treat the probability Pr(y|f[x;, ¢]) as a product of
univariate terms for each element yy4 € y:

Pr(yltlxi, @) = [[Prvalflxi, ¢)), (5.25)
d

where f;[x;, @] is the d" set of network outputs, which describe the parameters of the
distribution over y4. For example, to predict multiple continuous variables y4; € R, we
use a normal distribution for each y4, and the network outputs f4[x;, @] predict the means
of these distributions. To predict multiple discrete variables yq € {1,2,..., K}, we use a
categorical distribution for each yq. Here, each set of network outputs f;[x;, ¢| predicts
the K values that contribute to the categorical distribution for yg4.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 5.3
Multiclass
cross-entropy loss

Problems 5.3-5.6

Appendix C.1.5
Independence

Problems

=

J.

7-5.10

70

5 Loss functions

Data Type Domain Distribution Use
univariate, continuous, y R univariate regression
unbounded normal

univariate, continuous, yeR Laplace robust
unbounded or t-distribution regression
univariate, continuous, y€R mixture of multimodal
unbounded Gaussians regression
univariate, continuous, y eRT exponential predicting
bounded below or gamma magnitude
univariate, continuous, y € [0,1] beta predicting
bounded proportions
multivariate, continuous, y € R¥ multivariate multivariate
unbounded normal regression
univariate, continuous, y € (—m, 7] von Mises predicting
circular direction
univariate, discrete, y € {0,1} Bernoulli binary
binary classification
univariate, discrete, ye{l,2,...,K} categorical multiclass
bounded classification
univariate, discrete, y€[0,1,2,3,...] Poisson predicting

bounded below
multivariate, discrete,

permutation

y € Perm[1,2,..., K]

Plackett-Luce

event counts

ranking

Figure 5.11 Distributions for loss functions for different prediction types.

When we minimize the negative log probability, this product becomes a sum of terms:

I
L{g] = =Y log [Pr(ylfixi, ¢])| = = >

i=1

i=1

Z log [Pr(yidlfd (xi, @])]-
d

where y;4 is the d* output from the i*" training example.

(5.26)

To make two or more prediction types simultaneously, we similarly assume the errors
in each are independent. For example, to predict wind direction and strength, we might
choose the von Mises distribution (defined on circular domains) for the direction and
the exponential distribution (defined on positive real numbers) for the strength. The
independence assumption implies that the joint likelihood of the two predictions is the
product of individual likelihoods. These terms will become additive when we compute
the negative log-likelihood.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

5.7

5.7 Cross-entropy loss 71

a) Empirical data distribution b) 0o Model distribution
—
N
o S
= = o)
5, K ’
<
A
0.0 T
-10.0 0.0 10.0 -10.0 0.0 M 10.0
z z

Minimize KL divergence

Figure 5.12 Cross-entropy method. a) Empirical distribution of training samples
(arrows denote Dirac delta functions). b) Model distribution (a normal distri-
bution with parameters @ = p1, ¢?). In the cross-entropy approach, we minimize
the distance (KL divergence) between these two distributions as a function of the
model parameters 6.

Cross-entropy loss

In this chapter, we developed loss functions that minimize negative log-likelihood. How-
ever, the term cross-entropy loss is also commonplace. In this section, we describe the
cross-entropy loss and show that it is equivalent to using negative log-likelihood.

The cross-entropy loss is based on the idea of finding parameters 6 that minimize the
distance between the empirical distribution ¢(y) of the observed data y and a model dis-
tribution Pr(y|@) (figure 5.12). The distance between two probability distributions ¢(z)
and p(z) can be evaluated using the Kullback-Leibler (KL) divergence:

Dgr[qllp] = /

— 00

(o] oo

) logla(2)]dz ~ [alz)log[p(2)] = (5.27)

— 00

Now consider that we observe an empirical data distribution at points {y;}/_;. We
can describe this as a weighted sum of point masses:

I

alv) = 3 3 dly — il (5.29)

i=1
where d[e] is the Dirac delta function. We want to minimize the KL divergence between
the model distribution Pr(y|@) and this empirical distribution:

6 = argmin { / h q(y) log[q(y)|dy — / h q(y) log[Pr(y|0)]dy

) S —o0
= argénin {— /O:O q(y)log [Pr(y|0)]dy} , (5.29)

Draft: please send errata to udlbookmail@gmail.com.

Appendix C.5.1
KL Divergence

Appendix B.1.3
Dirac delta
function

5.8

72 5 Loss functions

where the first term disappears, as it has no dependence on 6. The remaining second
term is known as the cross-entropy. It can be interpreted as the amount of uncertainty
that remains in one distribution after taking into account what we already know from
the other. Now, we substitute in the definition of ¢(y) from equation 5.28:

. (1
6 = argmin —/ (IZ5[y—yi]> log[Pr(y|0)]dy]

% —00

I
. 1
= argmin —IZIOg[Pr(yZ-G)]]

L i=1
T
= arggnin —Zlog [Pr(ylw)}] . (5.30)

The product of the two terms in the first line corresponds to pointwise multiplying the
point masses in figure 5.12a with the logarithm of the distribution in figure 5.12b. We
are left with a finite set of weighted probability masses centered on the data points. In
the last line, we have eliminated the constant scaling factor 1/1, as this does not affect
the position of the minimum.

In machine learning, the distribution parameters 8 are computed by the model f[x;, ¢],
so we have:

I
¢ = argmin | - > log[Pr(yilfxi, d])] | - (5.31)
i=1
This is precisely the negative log-likelihood criterion from the recipe in section 5.2.
It follows that the negative log-likelihood criterion (from maximizing the data likeli-
hood) and the cross-entropy criterion (from minimizing the distance between the model
and empirical data distributions) are equivalent.

Summary

We previously considered neural networks as directly predicting outputs y from data x.
In this chapter, we shifted perspective to think about neural networks as computing the
parameters 6 of probability distributions Pr(y|@) over the output space. This led to a
principled approach to building loss functions. We selected model parameters ¢ that
maximized the likelihood of the observed data under these distributions. We saw that
this is equivalent to minimizing the negative log-likelihood.

The least squares criterion for regression is a natural consequence of this approach;
it follows from the assumption that y is normally distributed and that we are predicting
the mean. We also saw how the regression model could be (i) extended to estimate the
uncertainty over the prediction and (ii) extended to make that uncertainty dependent
on the input (the heteroscedastic model). We applied the same approach to both binary
and multiclass classification and derived loss functions for each. We discussed how to

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 73

tackle more complex data types and how to deal with multiple outputs. Finally, we
argued that cross-entropy is an equivalent way to think about fitting models.

In previous chapters, we developed neural network models. In this chapter, we de-
veloped loss functions for deciding how well a model describes the training data for a
given set of parameters. The next chapter considers model training, in which we aim to
find the model parameters that minimize this loss.

Notes

Losses based on the normal distribution: Nix & Weigend (1994) and Williams (1996)
investigated heteroscedastic nonlinear regression in which both the mean and the variance of
the output are functions of the input. In the context of unsupervised learning, Burda et al.
(2016) use a loss function based on a multivariate normal distribution with diagonal covariance,
and Dorta et al. (2018) use a loss function based on a normal distribution with full covariance.

Robust regression: Qi et al. (2020) investigate the properties of regression models that min-
imize mean absolute error rather than mean squared error. This loss function follows from
assuming a Laplace distribution over the outputs and estimates the median output for a given
input rather than the mean. Barron (2019) presents a loss function that parameterizes the de-
gree of robustness. When interpreted in a probabilistic context, it yields a family of univariate
probability distributions that includes the normal and Cauchy distributions as special cases.

Estimating quantiles: Sometimes, we may not want to estimate the mean or median in a
regression task but may instead want to predict a quantile. For example, this is useful for risk
models, where we want to know that the true value will be less than the predicted value 90%
of the time. This is known as quantile regression (Koenker & Hallock, 2001). This could be
done by fitting a heteroscedastic regression model and then estimating the quantile based on
the predicted normal distribution. Alternatively, the quantiles can be estimated directly using
quantile loss (also known as pinball loss). In practice, this minimizes the absolute deviations
of the data from the model but weights the deviations in one direction more than the other.
Recent work has investigated simultaneously predicting multiple quantiles to get an idea of the
overall distribution shape (Rodrigues & Pereira, 2020).

Class imbalance and focal loss: Lin et al. (2017¢) address data imbalance in classification
problems. If the number of examples for some classes is much greater than for others, then the
standard maximum likelihood loss does not work well; the model may concentrate on becoming
more confident about well-classified examples from the dominant classes and classify less well-
represented classes poorly. Lin et al. (2017¢) introduce focal loss, which adds a single extra
parameter that down-weights the effect of well-classified examples to improve performance.

Learning to rank: Cao et al. (2007), Xia et al. (2008), and Chen et al. (2009) all used the
Plackett-Luce model in loss functions for learning to rank data. This is the listwise approach to
learning to rank as the model ingests an entire list of objects to be ranked at once. Alternative
approaches are the pointwise approach, in which the model ingests a single object, and the
pairwise approach, where the model ingests pairs of objects. Chen et al. (2009) summarize
different approaches for learning to rank.

Other data types: Fan et al. (2020) use a loss based on the beta distribution for predicting
values between zero and one. Jacobs et al. (1991) and Bishop (1994) investigated mizture
density networks for multimodal data. These model the output as a mixture of Gaussians

Draft: please send errata to udlbookmail@gmail.com.

74 5 Loss functions

Figure 5.13 The von Mises distribu-
tion is defined over the circular do-
main (—m,w]. It has two parameters.
The mean p determines the position
of the peak. The concentration x >
0 acts like the inverse of the vari-
ance. Hence 1/1/k is roughly equivalent
to the standard deviation in a normal
distribution.

(see figure 5.14) that is conditional on the input. Prokudin et al. (2018) used the von Mises
distribution to predict direction (see figure 5.13). Fallah et al. (2009) constructed loss functions
for prediction counts using the Poisson distribution (see figure 5.15). Ng et al. (2017) used loss
functions based on the gamma distribution to predict duration.

Non-probabilistic approaches: It is not strictly necessary to adopt the probabilistic ap-
proach discussed in this chapter, but this has become the default in recent years; any loss func-
tion that aims to reduce the distance between the model output and the training outputs will
suffice, and distance can be defined in any way that seems sensible. There are several well-known
non-probabilistic machine learning models for classification, including support vector machines
(Vapnik, 1995; Cristianini & Shawe-Taylor, 2000), which use hinge loss, and AdaBoost (Freund
& Schapire, 1997), which uses exponential loss.

Problems

Problem 5.1 Show that the logistic sigmoid function sig[z] maps z = —oco to 0, z = 0 to 0.5
and z = oo to 1 where:

1
i =" .32
sigle] = 1o (53
Problem 5.2 The loss L for binary classification for a single training pair {x, y} is:
L= ~(1 - y)log[1 - siglflx, ¢]]] — ylog|sislfx, #]]], (5.33)

where sig[e] is defined in equation 5.32. Plot this loss as a function of the transformed network
output sig[f[x, @]] € [0,1] (i) when the training label y = 0 and (ii) when y = 1.

Problem 5.3" Suppose we want to build a model that predicts the direction y in radians of the
prevailing wind based on local measurements of barometric pressure x. A suitable distribution
over circular domains is the von Mises distribution (figure 5.13):

exp [k cosly — p]]]

27 - Besselg[x] (5:34)

Pr(ylp, k) =

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 75

5.0 0.2
ee A
o Qe 0o i
=N C)])
s 19 @ e Q§ = N) 1
5 ° e @ 0% = ! |
a () . 7\ 1 P
) =~ 1 1 I : kS N\
5 ° A 'R o\
= ® [} I v 17y \
(@) e 0 g 1 wi I’, \ \
) 1 v 1 \
I V] A /1 \
] 1 A s \
’ n \ 71 \ \
/ AR eyl \ N
5.0 0.0 - SN g e’ N By
1.0 0 10 5.0 0.0 5.0-5.0 0.0 5.0
Input, x z z

Figure 5.14 Multimodal data and mixture of Gaussians density. a) Example
training data where, for intermediate values of the input z, the corresponding
output y follows one of two paths. For example, at x = 0, the output y might
be roughly —2 or +3 but is unlikely to be between these values. b) The mixture
of Gaussians is a probability model suited to this kind of data. As the name
suggests, the model is a weighted sum (solid cyan curve) of two or more normal
distributions with different means and variances (here, two weighted distributions,
dashed blue and orange curves). When the means are far apart, this forms a
multimodal distribution. ¢) When the means are close, the mixture can model
unimodal but non-normal densities.

where 4 is a measure of the mean direction and x is a measure of the concentration (i.e., the
inverse of the variance). The term Besselg[x] is a modified Bessel function of order 0.
Use the recipe from section 5.2 to develop a loss function for learning the parameter p of a

model f[x, ¢] to predict the most likely wind direction. Your solution should treat the concen-
tration k as constant. How would you perform inference?

Problem 5.4 Sometimes, the outputs y for input x are multimodal (figure 5.14a); there is
more than one valid prediction for a given input. Here, we might use a weighted sum of normal
components as the distribution over the output. This is known as a mizture of Gaussians model.
For example, a mixture of two Gaussians has parameters 6 = {\, u1, o3, iz, 0'5}:

R IR S N
Privix 2 2y _ (y —) .
T(y‘ y M1, 2, 01, 02) 271_0_% exp [20_% 271_0_% exp 20%) (5 35)

where A € [0,1] controls the relative weight of the two components, which have means 1, p2
and variances of, o3, respectively. This model can represent a distribution with two peaks
(figure 5.14b) or a distribution with one peak but a more complex shape (figure 5.14c).

Use the recipe from section 5.2 to construct a loss function for training a model f[z, ¢| that takes
input z, has parameters ¢, and predicts a mixture of two Gaussians. The loss should be based
on [training data pairs {z;,y;}. What problems do you foresee when performing inference?

Problem 5.5 Consider extending the model from problem 5.3 to predict the wind direction using
a mixture of two von Mises distributions. Write an expression for the likelihood Pr(y|@) for
this model. How many outputs will the network need to produce?

Draft: please send errata to udlbookmail@gmail.com.

76 5 Loss functions

00502 4 6 8 0 2 ®@ 0 2 4 6 85 10 2 W@ 0 24681 120
z 2 z
Figure 5.15 Poisson distribution. This discrete distribution is defined over non-
negative integers z € {0,1,2,...}. It has a single parameter A € R™, which is
known as the rate and is the mean of the distribution. a—c) Poisson distributions
with rates of 1.4, 2.8, and 6.0, respectively.

Problem 5.6 Consider building a model to predict the number of pedestrians y € {0,1,2,...}
that will pass a given point in the city in the next minute, based on data x that contains
information about the time of day, the longitude and latitude, and the type of neighborhood.
A suitable distribution for modeling counts is the Poisson distribution (figure 5.15). This has
a single parameter A > 0 called the rate that represents the mean of the distribution. The
distribution has probability density function:

Are?
k!

Design a loss function for this model assuming we have access to I training pairs {x;, y;}.

Priy=k)=

(5.36)

Problem 5.7 Consider a multivariate regression problem where we predict ten outputs, so y €
R!°, and model each with an independent normal distribution where the means p4 are pre-
dicted by the network, and variances o are constant. Write an expression for the likeli-
hood Pr(y|f[x,¢]). Show that minimizing the negative log-likelihood of this model is still
equivalent to minimizing a sum of squared terms if we don’t estimate the variance 2.

Problem 5.8 Construct a loss function for for making multivariate predictions y based on
independent normal distributions with different variances o2 for each dimension. Assume a
heteroscedastic model so that both the means p4 and variances o3 vary as a function of the
data.

Problem 5.9 Consider a multivariate regression problem in which we predict the height of a
person in meters and their weight in kilos from data x. Here, the units take quite different
ranges. What problems do you see this causing? Propose two solutions to these problems.

Problem 5.10 Extend the model from problem 5.3 to predict both the wind direction and the
wind speed and define the associated loss function.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.1

Chapter 6

Fitting models

Chapters 3 and 4 described shallow and deep neural networks. These represent families
of piecewise linear functions, where the parameters determine the particular function.
Chapter 5 introduced the loss — a single number representing the mismatch between
the network predictions and the ground truth for a training set.

The loss depends on the network parameters, and this chapter considers how to find
the parameter values that minimize this loss. This is known as learning the network’s
parameters or simply as training or fitting the model. The process is to choose initial
parameter values and then iterate the following two steps: (i) compute the derivatives
(gradients) of the loss with respect to the parameters, and (ii) adjust the parameters
based on the gradients to decrease the loss. After many iterations, we hope to reach the
overall minimum of the loss function.

This chapter tackles the second of these steps; we consider algorithms that adjust
the parameters to decrease the loss. Chapter 7 discusses how to initialize the parameters
and compute the gradients for neural networks.

Gradient descent

To fit a model, we need a training set {x;,y;} of input/output pairs. We seek parame-
ters ¢ for the model f[x;, ¢] that map the inputs x; to the outputs y; as well as possible.
To this end, we define a loss function L[¢] that returns a single number that quanti-
fies the mismatch in this mapping. The goal of an optimization algorithm is to find
parameters é’) that minimize the loss:

o= arg;nin [L[¢]} . (6.1)

There are many families of optimization algorithms, but the standard methods for train-
ing neural networks are iterative. These algorithms initialize the parameters heuristically
and then adjust them repeatedly in such a way that the loss decreases.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 6.
Line search

1

6.1.1

78 6 Fitting models

The simplest method in this class is gradient descent. This starts with initial param-
eters ¢ = [po, ¢1,...,0n]T and iterates two steps:

Step 1. Compute the derivatives of the loss with respect to the parameters:

oL

0o

oL oL

01
— = 6.2
e (62)

0L

OpN

Step 2. Update the parameters according to the rule:
oL

¢<—¢—a~%, (6.3)

where the positive scalar o determines the magnitude of the change.

The first step computes the gradient of the loss function at the current position. This
determines the wuphill direction of the loss function. The second step moves a small
distance a downhill (hence the negative sign). The parameter o may be fixed (in which
case, we call it a learning rate), or we may perform a line search where we try several
values of a to find the one that most decreases the loss.

At the minimum of the loss function, the surface must be flat (or we could improve
further by going downhill). Hence, the gradient will be zero, and the parameters will stop
changing. In practice, we monitor the gradient magnitude and terminate the algorithm
when it becomes too small.

Linear regression example

Consider applying gradient descent to the 1D linear regression model from chapter 2. The
model [z, ¢] maps a scalar input x to a scalar output y and has parameters ¢ = [¢g, $1]7,
which represent the y-intercept and the slope:

y = flz,¢
= o+ ¢ (6.4)

Given a dataset {x;,y;} containing I input/output pairs, we choose the least squares
loss function:

I I
Ligl = Y 6 = > (fwi, ¢ —v:)°
i=1 =1
I
= Y (do+ 1w —vi)°, (6.5)

i=1

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.1 Gradient descent

79

2. b)
70
.. ®
e e o 60
(¢
@
>
o
2 1.0 ®e
5 @
o
@
0.0 .
0.0 1.0 2.0
Input,
c Loss, L d
), (4]).
—
<
900
)
n .)
1.0 ——— 0.0 :
0.0 1.0 2.0 0.0 1.0 20
Intercept, ¢o Input,

Figure 6.1 Gradient descent for the linear regression model. a) Training set of I =
12 input/output pairs {z;,y:;}. b) Loss function showing iterations of gradient
descent. We start at point 0 and move in the steepest downhill direction until
we can improve no further to arrive at point 1. We then repeat this procedure.
We measure the gradient at point 1 and move downhill to point 2 and so on. c)
This can be visualized better as a heatmap, where the brightness represents the
loss. After only four iterations, we are already close to the minimum. d) The
model with the parameters at point 0 (lightest line) describes the data very badly,
but each successive iteration improves the fit. The model with the parameters at
point 4 (darkest line) is already a reasonable description of the training data.

Draft: please send errata to udlbookmail@gmail.com.

80 6 Fitting models

where the term ¢; = (¢ + P12 — yi)2 is the individual contribution to the loss from
the i*" training example.

The derivative of the loss function with respect to the parameters can be decomposed
into the sum of the derivatives of the individual contributions:

I I
%ZEZ&:Z% (6.6)

o 0¢ i=1 i=1 0¢
Problom 6.1 where these are given by:
o4
o oo | 2(¢o + p12i — i) 6.7)
¢ %j 2xi(¢o + P17 — yi)
Notehook 6.9 Figure 6.1 shows the progression of this algorithm as we iteratively compute the
1 € K 0.2

derivatives according to equations 6.6 and 6.7 and then update the parameters using the
rule in equation 6.3. In this case, we have used a line search procedure to find the value
of o that decreases the loss the most at each iteration.

Gradient descent

6.1.2 Gabor model example

Loss functions for linear regression problems (figure 6.1c) always have a single well-
defined global minimum. More formally, they are convex, which means that no chord
(line segment between two points on the surface) intersects the function. Convexity
implies that wherever we initialize the parameters, we are bound to reach the minimum
if we keep walking downhill; the training procedure can’t fail.

Unfortunately, loss functions for most nonlinear models, including both shallow and
deep networks, are non-conver. Visualizing neural network loss functions is challenging
due to the number of parameters. Hence, we first explore a simpler nonlinear model with
two parameters to gain insight into the properties of non-convex loss functions:

(¢bo + 0.06 - ¢1$)2>
32.0 :

This Gabor model maps scalar input x to scalar output y and consists of a sinusoidal
component (creating an oscillatory function) multiplied by a negative exponential com-
ponent (causing the amplitude to decrease as we move from the center). It has two
parameters ¢ = [¢g, #1]7, where ¢ € R determines the mean position of the function
and ¢; € RT stretches or squeezes it along the x-axis (figure 6.2).

Consider a training set of I examples {x;,y;} (figure 6.3). The least squares loss
function for I training examples is defined as:

Problem 6.2

flz, @] = sin[¢po + 0.06 - p1x] - exp <— (6.8)

Problems 6.3-6.5

Ll = (flzi, 0] — :)*. (6.9)

i=1

Once more, the goal is to find the parameters é& that minimize this loss.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.1 Gradient descent

81

a)1 b) c)

>

5 | |]

[al

s

3

(@]

$o=-5.0 $0=20.0 $0=3.0
K $1=25.0 ¢1=40.0 ¢1=15.0
415 0 15 -15 : 1515 0 15
Input, = Input, =

Input, =

Figure 6.2 Gabor model. This nonlinear model maps scalar input z to scalar
output y and has parameters ¢ = [¢o,$1]7. It describes a sinusoidal function
that decreases in amplitude with distance from its center. Parameter ¢o € R
determines the position of the center. As ¢¢ increases, the function moves left.
Parameter ¢1 € RT squeezes the function along the 2-axis relative to the center.

As ¢1 increases, the function narrows. a—c) Model with different parameters.

1
Figure 6.3 Training data for fitting the
Gabor model. The training dataset con-
: e tains 28 input/output examples {z;, y; }.
=]) These data were created by uniformly
<] ())) : sampling z; € [—15,15], passir}g the
= I) @ ® samples throu_gh a Gabor ;nodel with pa-
5 | e ® rameters ¢ = [0.0,16.6]", and adding
O | ® @ normally distributed noise.
1 o
-15 0 15
Input,

Figure 6.4 depicts the loss function associated with the Gabor model for this dataset.
There are numerous local minima (cyan circles). Here the gradient is zero, and the loss
increases if we move in any direction, but we are not at the overall minimum of the
function. The point with the lowest loss is known as the global minimum and is depicted

by the gray circle.

If we start in a random position and use gradient descent to go downhill, there is
no guarantee that we will wind up at the global minimum and find the best parameters
(figure 6.5a). It’s equally or even more likely that the algorithm will terminate in one
of the local minima. Furthermore, there is no way of knowing whether there is a better

solution elsewhere.

6.1.3 Local minima and saddle points

Draft: please send errata to udlbookmail@gmail.com.

Problem 6.6

Problems 6.7-6.8

82 6 Fitting models
a) Loss, L[¢] b)
25 1
[4
S e
> [
o) 1@ 0) :
2G| | P
o 3 dle ' ® e
............ ¢
) @) O ; ' Loss=3.67
SN VWU IS I N T o4) 15 0 15
........... 1
+
o
o
o © e o
- [0) : Loss=0.64
~10.0 %'o 10.0 ™15 0 15
d) e) f)
&
°c e o © o ©
= e))
519 e 0 8 ® °® \“ > 9 2 :
E.';'-—A @ » 0 "~ @ 9) 1‘“ ® 4)
8 Po i)) 0) L) ® ™)
8 ! (]
; °_ Loss=5.51 ° ILoss=10.18 o Loss=9.96
15 0 1515 0 15-15 0 15
Input, Input, Input,

Figure 6.4 Loss function for the Gabor model. a) The loss function is non-convex,
with multiple local minima (cyan circles) in addition to the global minimum (gray
circle). It also contains saddle points where the gradient is locally zero, but the
function increases in one direction and decreases in the other. The blue cross is
an example of a saddle point; the function decreases as we move horizontally in
either direction but increases as we move vertically. b—f) Models associated with
the different minima. In each case, there is no small change that decreases the
loss. Panel (c) shows the global minimum, which has a loss of 0.64.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.2

6.2 Stochastic gradient descent 83

?2)5 Loss, L{¢] b) Loss, L[¢]
1./§ 1
<
3D
o Q
%350 00 " 10.0-10.0 00 © 1100
0 0

Figure 6.5 Gradient descent vs. stochastic gradient descent. a) Gradient descent
with line search. As long as the gradient descent algorithm is initialized in the
right “valley” of the loss function (e.g., points 1 and 3), the parameter estimate
will move steadily toward the global minimum. However, if it is initialized outside
this valley (e.g., point 2), it will descend toward one of the local minima. b)
Stochastic gradient descent adds noise to the optimization process, so it is possible
to escape from the wrong valley (e.g., point 2) and still reach the global minimum.

In addition, the loss function contains saddle points (e.g., the blue cross in figure 6.4).
Here, the gradient is zero, but the function increases in some directions and decreases
in others. If the current parameters are not exactly at the saddle point, then gradient
descent can escape by moving downhill. However, the surface near the saddle point is
flat, so it’s hard to be sure that training hasn’t converged; if we terminate the algorithm
when the gradient is small, we may erroneously stop near a saddle point.

Stochastic gradient descent

The Gabor model has two parameters, so we could find the global minimum by either (i)
exhaustively searching the parameter space or (ii) repeatedly starting gradient descent
from different positions and choosing the result with the lowest loss. However, neural
network models can have millions of parameters, so neither approach is practical. In
short, using gradient descent to find the global optimum of a high-dimensional loss
function is challenging. We can find ¢ minimum, but there is no way to tell whether this

Draft: please send errata to udlbookmail@gmail.com.

84

6 Fitting models

?2)5 Loss, L{¢] b) Loss, L{¢]
@)
o
e

<

o (6!
300 0.0 " 10.0-10.0 0.0 -10.0

®o q b0

2Cz)5 Loss, L{¢]) Loss, L[]
<

o o
2i%o.o 10.0-10.0 -10.0

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

O.IO OTO

b0 b0

Figure 6.6 Alternative view of SGD for the Gabor model with a batch size of
three. a) Loss function for the entire training dataset. At each iteration, there
is a probability distribution of possible parameter changes (inset shows samples).
These correspond to different choices of the three batch elements. b) Loss function
for one possible batch. The SGD algorithm moves in the downhill direction on
this function for a distance that is determined by the learning rate and the local
gradient magnitude. The current model (dashed function in inset) changes to
better fit the batch data (solid function). c¢) A different batch creates a different
loss function and results in a different update. d) For this batch, the algorithm
moves downhill with respect to the batch loss function but uphill with respect to
the global loss function in panel (a). This is how SGD can escape local minima.

6.2.1

6.2.2

6.2 Stochastic gradient descent 85

is the global minimum or even a good one.

One of the main problems is that the final destination of a gradient descent algorithm
is entirely determined by the starting point. Stochastic gradient descent (SGD) attempts
to remedy this problem by adding some noise to the gradient at each step. The solution
still moves downhill on average, but at any given iteration, the direction chosen is not
necessarily in the steepest downhill direction. Indeed, it might not be downhill at all.
The SGD algorithm has the possibility of moving temporarily uphill and hence jumping
from one “valley” of the loss function to another (figure 6.5b).

Batches and epochs

The mechanism for introducing randomness is simple. At each iteration, the algorithm
chooses a random subset of the training data and computes the gradient from these
examples alone. This subset is known as a minibatch or batch for short. The update rule
for the model parameters ¢, at iteration ¢ is hence:

ol ¢,
¢t+1<_¢t_a'za[$”7

1€EB
where B; is a set containing the indices of the input/output pairs in the current batch
and, as before, ¢; is the loss due to the i*" pair. The term « is the learning rate, and
together with the gradient magnitude, determines the distance moved at each iteration.
The learning rate is chosen at the start of the procedure and does not depend on the
local properties of the function.

The batches are usually drawn from the dataset without replacement. The algorithm
works through the training examples until it has used all the data, at which point it
starts sampling from the full training dataset again. A single pass through the entire
training dataset is referred to as an epoch. A batch may be as small as a single example
or as large as the whole dataset. The latter case is called full-batch gradient descent and
is identical to regular (non-stochastic) gradient descent.

An alternative interpretation of SGD is that it computes the gradient of a different
loss function at each iteration; the loss function depends on both the model and the
training data and hence will differ for each randomly selected batch. In this view,
SGD performs deterministic gradient descent on a constantly changing loss function
(figure 6.6). However, despite this variability, the expected loss and expected gradients
at any point remain the same as for gradient descent.

(6.10)

Properties of stochastic gradient descent

SGD has several attractive features. First, although it adds noise to the trajectory, it
still improves the fit to a subset of the data at each iteration. Hence, the updates tend
to be sensible even if they are not optimal. Second, because it draws training examples
without replacement and iterates through the dataset, the training examples all still
contribute equally. Third, it is less computationally expensive to compute the gradient

Draft: please send errata to udlbookmail@gmail.com.

Notebook 6.3
Stochastic
gradient descent

Problem 6.9

6.3

Problem 6.10

6.3.1

Notebook 6.4
Momentum

86 6 Fitting models

from just a subset of the training data. Fourth, it can (in principle) escape local minima.
Fifth, it reduces the chances of getting stuck near saddle points; it is likely that at least
some of the possible batches will have a significant gradient at any point on the loss
function. Finally, there is some evidence that SGD finds parameters for neural networks
that cause them to generalize well to new data in practice (see section 9.2).

SGD does not necessarily “converge” in the traditional sense. However, the hope is
that when we are close to the global minimum, all the data points will be well described
by the model. Consequently, the gradient will be small, whichever batch is chosen, and
the parameters will cease to change much. In practice, SGD is often applied with a
learning rate schedule. The learning rate « starts at a high value and is decreased by a
constant factor every N epochs. The logic is that in the early stages of training, we want
the algorithm to explore the parameter space, jumping from valley to valley to find a
sensible region. In later stages, we are roughly in the right place and are more concerned
with fine-tuning the parameters, so we decrease a to make smaller changes.

Momentum

A common modification to stochastic gradient descent is to add a momentum term. We
update the parameters with a weighted combination of the gradient computed from the
current batch and the direction moved in the previous step:

me,; < ﬂ.mtJr(lﬂ)Za%[;ft]
i€B
Pry1 & P —a-myg, (6.11)

where m; is the momentum (which drives the update at iteration t), 5 € [0,1) controls
the degree to which the gradient is smoothed over time, and « is the learning rate.

The recursive formulation of the momentum calculation means that the gradient step
is an infinite weighted sum of all the previous gradients, where the weights get smaller
as we move back in time. The effective learning rate increases if all these gradients
are aligned over multiple iterations but decreases if the gradient direction repeatedly
changes as the terms in the sum cancel out. The overall effect is a smoother trajectory
and reduced oscillatory behavior in valleys (figure 6.7).

Nesterov accelerated momentum
The momentum term can be considered a coarse prediction of where the SGD algorithm

will move next. Nesterov accelerated momentum (figure 6.8) computes the gradients at
this predicted point rather than at the current point:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.3 Momentum 87
?2)5 Loss, L[¢] b) Loss, L[¢]
<
Q. @]
O ©
2300 10.0-10.0 " 10,0

00
%o

0.0
%o

Figure 6.7 Stochastic gradient descent with momentum. a) Regular stochastic
descent takes a very indirect path toward the minimum. b) With a momentum
term, the change at the current step is a weighted combination of the previ-
ous change and the gradient computed from the batch. This smooths out the
trajectory and increases the speed of convergence.

Loss, L[]

Nesterov
momentum

Figure 6.8 Nesterov accelerated momen-
tum. The solution has traveled along
the dashed line to arrive at point 1. A
traditional momentum update measures
the gradient at point 1, moves some dis-
tance in this direction to point 2, and
then adds the momentum term from the
previous iteration (i.e., in the same di-
rection as the dashed line), arriving at
point 3. The Nesterov momentum up-
date first applies the momentum term
(moving from point 1 to point 4) and
then measures the gradient and applies
an update to arrive at point 5.

Draft: please send errata to udlbookmail@gmail.com.

6.4

88 6 Fitting models

my — feom+(1-0) Z 8£i[¢ta_¢a o
i€By

Pry1 P —a-myg, (6.12)

where now the gradients are evaluated at ¢, — o - m;. One way to think about this is
that the gradient term now corrects the path provided by momentum alone.

Adam

Gradient descent with a fixed step size has the following undesirable property: it makes
large adjustments to parameters associated with large gradients (where perhaps we
should be more cautious) and small adjustments to parameters associated with small
gradients (where perhaps we should explore further). When the gradient of the loss
surface is much steeper in one direction than another, it is difficult to choose a learning
rate that (i) makes good progress in both directions and (ii) is stable (figures 6.9a-D).

A straightforward approach is to normalize the gradients so that we move a fixed
distance (governed by the learning rate) in each direction. To do this, we first measure
the gradient my; and the pointwise squared gradient vy;1:

mgpy 8[6/[:;15]
2
Vil & (815[;%} > : (6.13)

Then we apply the update rule:

myi

Vg1 + €

where the square root and division are both pointwise, « is the learning rate, and € is a
small constant that prevents division by zero when the gradient magnitude is zero. The
term vy is the squared gradient, and the positive root of this is used to normalize the
gradient itself, so all that remains is the sign in each coordinate direction. The result is
that the algorithm moves a fixed distance o along each coordinate, where the direction
is determined by whichever way is downhill (figure 6.9¢). This simple algorithm makes
good progress in both directions but will not converge unless it happens to land exactly
at the minimum. Instead, it will bounce back and forth around the minimum.

Adaptive moment estimation, or Adam, takes this idea and adds momentum to both
the estimate of the gradient and the squared gradient:

Qi1 < G (6.14)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.4 Adam 89

a1)o Loss, L[¢] b)1 , Loss, L[¢]
5 1
Gradient descent | Gradient descent
e t=0 a=0.05 . a=1.0
-1.0 . -1.0 .
1.0 o 10 10 bo 1.0
C?o Loss, L[¢] d)10 Loss, L[¢]
S]
Normalized gradients Adam
. a=0.05 ¢« a=0.057p=09v=0.99
Ao — -1.0 : ————————

1.0 bo T 0 o ' bo 1.0

Figure 6.9 Adaptive moment estimation (Adam). a) This loss function changes
quickly in the vertical direction but slowly in the horizontal direction. If we run
full-batch gradient descent with a learning rate that makes good progress in the
vertical direction, then the algorithm takes a long time to reach the final hor-
izontal position. b) If the learning rate is chosen so that the algorithm makes
good progress in the horizontal direction, it overshoots in the vertical direction
and becomes unstable. ¢) A straightforward approach is to move a fixed distance
along each axis at each step so that we move downhill in both directions. This is
accomplished by normalizing the gradient magnitude and retaining only the sign.
However, this does not usually converge to the exact minimum but instead oscil-
lates back and forth around it (here between the last two points). d) The Adam
algorithm uses momentum in both the estimated gradient and the normalization
term, which creates a smoother path.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 6.5
Adam

90 6 Fitting models

mgi; < ﬂ -my + (1 — B) al(;[;z:t]
2
vir vk (20d) (6.15)

where § and v are the momentum coefficients for the two statistics.

Using momentum is equivalent to taking a weighted average over the history of each
of these statistics. At the start of the procedure, all the previous measurements are
effectively zero, resulting in unrealistically small estimates. Consequently, we modify
these statistics using the rule:

~ m;

S I 1= gt

~ Vil

Viyl liti:;tﬂ (616)

Since 5 and v are in the range [0,1), the terms with exponents t+1 become smaller
with each time step, the denominators become closer to one, and this modification has
a diminishing effect.

Finally, we update the parameters as before, but with the modified terms:

my

. VVig1 €

The result is an algorithm that can converge to the overall minimum and makes good
progress in every direction in the parameter space. Note that Adam is usually used in a
stochastic setting where the gradients and their squares are computed from mini-batches:

Qi1 — P« (6.17)

A
mt+1 < ﬁ my +]. — Z ¢t

€8y
oti[é,\>
Viyr ’Y'Vt+(1—’Y)Z< 8§]>) (6.18)
€8y

and so the trajectory is noisy in practice.

As we shall see in chapter 7, the gradient magnitudes of neural network parameters
can depend on their depth in the network. Adam helps compensate for this tendency
and balances out changes across the different layers. In practice, Adam also has the
advantage of being less sensitive to the initial learning rate because it avoids situations
like those in figures 6.9a—b, so it doesn’t need complex learning rate schedules.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6.5

6.6

6.5 Training algorithm hyperparameters 91

Training algorithm hyperparameters

The choices of learning algorithm, batch size, learning rate schedule, and momentum
coefficients are all considered hyperparameters of the training algorithm; these directly
affect the final model performance but are distinct from the model parameters. Choosing
these can be more art than science, and it’s common to train many models with different
hyperparameters and choose the best one. This is known as hyperparameter search. We
return to this issue in chapter 8.

Summary

This chapter discussed model training. This problem was framed as finding parameters ¢
that corresponded to the minimum of a loss function L[¢]. The gradient descent method
measures the gradient of the loss function for the current parameters (i.e., how the loss
changes when we make a small change to the parameters). Then it moves the parameters
in the direction that decreases the loss fastest. This is repeated until convergence.

For nonlinear functions, the loss function may have both local minima (where gradi-
ent descent gets trapped) and saddle points (where gradient descent may appear to have
converged but has not). Stochastic gradient descent helps mitigate these problems.! At
each iteration, we use a different random subset of the data (a batch) to compute the
gradient. This adds noise to the process and helps prevent the algorithm from getting
trapped in a sub-optimal region of parameter space. Each iteration is also computation-
ally cheaper since it only uses a subset of the data. We saw that adding a momentum
term makes convergence more efficient. Finally, we introduced the Adam algorithm.

The ideas in this chapter apply to optimizing any model. The next chapter tackles
two aspects of training specific to neural networks. First, we address how to compute
the gradients of the loss with respect to the parameters of a neural network. This is
accomplished using the famous backpropagation algorithm. Second, we discuss how to
initialize the network parameters before optimization begins. Without careful initializa-
tion, the gradients used by the optimization can become extremely large or extremely
small, which can hinder the training process.

Notes

Optimization algorithms: Optimization algorithms are used extensively throughout engi-
neering, and it is generally more typical to use the term objective function rather than loss
function or cost function. Gradient descent was invented by Cauchy (1847), and stochastic gra-
dient descent dates back to at least Robbins & Monro (1951). A modern compromise between
the two is stochastic variance-reduced descent (Johnson & Zhang, 2013), in which the full gra-
dient is computed periodically, with stochastic updates interspersed. Reviews of optimization
algorithms for neural networks can be found in Ruder (2016), Bottou et al. (2018), and Sun
(2020). Bottou (2012) discusses best practice for SGD, including shuffling without replacement.

LChapter 20 discusses the extent to which saddle points and local minima really are problems in
deep learning. In practice, deep networks are surprisingly easy to train.

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.3.7
Eigenvalues
{=}

Problem 6.11

92 6 Fitting models

Convexity, minima, and saddle points: A function is convex if no chord (line segment
between two points on the surface) intersects the function. This can be tested algebraically by
considering the Hessian matriz (the matrix of second derivatives):

%L %L %L
092 9¢00p1 T 0¢p0dN
%L %L %L
9¢10¢0 02 T 09109N
H(p = | 7" S o (6.19)
%L %L %L
O¢NOPo OPNOP1L T 6%

If the Hessian matrix is positive definite (has positive ecigenvalues) for all possible parameter
values, then the function is convex; the loss function will look like a smooth bowl (as in fig-
ure 6.1c), so training will be relatively easy. There will be a single global minimum and no local
minima or saddle points.

For any loss function, the eigenvalues of the Hessian matrix at places where the gradient is
zero allow us to classify this position as (i) a minimum (the eigenvalues are all positive), (ii)
a maximum (the eigenvalues are all negative), or (iii) a saddle point (positive eigenvalues are
associated with directions in which we are at a minimum and negative ones with directions
where we are at a maximum).

Line search: Gradient descent with a fixed step size is inefficient because the distance moved
depends entirely on the magnitude of the gradient. It moves a long distance when the function
is changing fast (where perhaps it should be more cautious) but a short distance when the
function is changing slowly (where perhaps it should explore further). For this reason, gradient
descent methods are usually combined with a line search procedure in which we sample the
function along the desired direction to try to find the optimal step size. One such approach
is bracketing (figure 6.10). Another problem with gradient descent is that it tends to lead to
inefficient oscillatory behavior when descending valleys (e.g., path 1 in figure 6.5a).

Beyond gradient descent: Numerous algorithms have been developed that remedy the prob-
lems of gradient descent. Most notable is the Newton method, which takes the curvature of the
surface into account using the inverse of the Hessian matrix; if the gradient of the function is
changing quickly, then it applies a more cautious update. This method eliminates the need for
line search and does not suffer from oscillatory behavior. However, it has its own problems; in
its simplest form, it moves toward the nearest extremum, but this may be a maximum if we
are closer to the top of a hill than we are to the bottom of a valley. Moreover, computing the
inverse Hessian is intractable when the number of parameters is large, as in neural networks.

Properties of SGD: The limit of SGD as the learning rate tends to zero is a stochastic
differential equation. Jastrzebski et al. (2018) showed that this equation relies on the learning-
rate to batch size ratio and that there is a relation between the learning rate to batch size ratio
and the width of the minimum found. Wider minima are considered more desirable; if the loss
function for test data is similar, then small errors in the parameter estimates will have little
effect on test performance. He et al. (2019) prove a generalization bound for SGD that has a
positive correlation with the ratio of batch size to learning rate. They train a large number of
models on different architectures and datasets and find empirical evidence that test accuracy
improves when the ratio of batch size to learning rate is low. Smith et al. (2018) and Goyal et al.
(2018) also identified the ratio of batch size to learning rate as being important for generalization
(see figure 20.10).

Momentum: The idea of using momentum to speed up optimization dates to Polyak (1964).
Goh (2017) presents an in-depth discussion of the properties of momentum. The Nesterov

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 93

a b d a b ¢ d a b ocd

® ¢ ¢

Figure 6.10 Line search using the bracketing approach. a) The current solution is
at position a (orange point), and we wish to search the region [a, d] (gray shaded
area). We define two points b, ¢ interior to the search region and evaluate the loss
function at these points. Here L[b] > L]c], so we eliminate the range [a,b]. b) We
now repeat this procedure in the refined search region and find that L[b] < Llc],
so we eliminate the range [c,d]. ¢) We repeat this process until this minimum is
closely bracketed.

accelerated gradient method was introduced by Nesterov (1983). Nesterov momentum was first
applied in the context of stochastic gradient descent by Sutskever et al. (2013).

Adaptive training algorithms: AdaGrad (Duchi et al., 2011) is an optimization algorithm
that addresses the possibility that some parameters may have to move further than others by
assigning a different learning rate to each parameter. AdaGrad uses the cumulative squared
gradient for each parameter to attenuate its learning rate. This has the disadvantage that the
learning rates decrease over time, and learning can halt before the minimum is found. RMSProp
(Hinton et al., 2012a) and AdaDelta (Zeiler, 2012) modified this algorithm to help prevent these
problems by recursively updating the squared gradient term.

By far the most widely used adaptive training algorithm is adaptive moment optimization or
Adam (Kingma & Ba, 2015). This combines the ideas of momentum (in which the gradient
vector is averaged over time) and AdaGrad, AdaDelta, and RMSProp (in which a smoothed
squared gradient term is used to modify the learning rate for each parameter). The original
paper on the Adam algorithm provided a convergence proof for convex loss functions, but a
counterexample was identified by Reddi et al. (2018), who developed a modification of Adam
called AMSGrad, which does converge. Of course, in deep learning, the loss functions are non-
convex, and Zaheer et al. (2018) subsequently developed an adaptive algorithm called YOGI
and proved that it converges in this scenario. Regardless of these theoretical objections, the
original Adam algorithm works well in practice and is widely used, not least because it works
well over a broad range of hyperparameters and makes rapid initial progress.

One potential problem with adaptive training algorithms is that the learning rates are based on
accumulated statistics of the observed gradients. At the start of training, when there are few
samples, these statistics may be very noisy. This can be remedied by learning rate warm-up
(Goyal et al., 2018), in which the learning rates are gradually increased over the first few thou-
sand iterations. An alternative solution is rectified Adam (Liu et al., 2021a), which gradually

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.3.7
Eigenvalues
Appendix B.3.8
Trace
Appendix B.3.8
Determinant

94 6 Fitting models

changes the momentum term over time in a way that helps avoid high variance. Dozat (2016)
incorporated Nesterov momentum into the Adam algorithm.

SGD vs. Adam: There has been a lively discussion about the relative merits of SGD and
Adam. Wilson et al. (2017) provided evidence that SGD with momentum can find lower minima
than Adam, which generalizes better over a variety of deep learning tasks. However, this
is strange since SGD is a special case of Adam (when S = v = 0) once the modification
term (equation 6.16) becomes one, which happens quickly. It is hence more likely that SGD
outperforms Adam when we use Adam’s default hyperparameters. Loshchilov & Hutter (2019)
proposed AdamW, which substantially improves the performance of Adam in the presence of
L2 regularization (see section 9.1). Choi et al. (2019) provide evidence that if we search for the
best Adam hyperparameters, it performs just as well as SGD and converges faster. Keskar &
Socher (2017) proposed a method called SWATS that starts using Adam (to make rapid initial
progress) and then switches to SGD (to get better final generalization performance).

Exhaustive search: All the algorithms discussed in this chapter are iterative. A completely
different approach is to quantize the network parameters and exhaustively search the resulting
discretized parameter space using SAT solvers (Mézard & Mora, 2009). This approach has
the potential to find the global minimum and provide a guarantee that there is no lower loss
elsewhere but is only practical for very small models.

Problems

Problem 6.1 Show that the derivatives of the least squares loss function in equation 6.5 are
given by the expressions in equation 6.7.

Problem 6.2 A surface is convex if the eigenvalues of the Hessian H[¢] are positive everywhere.
In this case, the surface has a unique minimum, and optimization is easy. Find an algebraic
expression for the Hessian matrix,

o’L _9’L
092 900

Hlp] = | 20 "o, | (6.20)
041060 047

for the linear regression model (equation 6.5). Prove that this function is convex by showing
that the eigenvalues are always positive. This can be done by showing that both the trace and
the determinant of the matrix are positive.

Problem 6.3 Compute the derivatives of the least squares loss L[¢] with respect to the param-
eters ¢ and ¢1 for the Gabor model (equation 6.8).

Problem 6.4 The logistic regression model uses a linear function to assign an input x to one
of two classes y € {0,1}. For a 1D input and a 1D output, it has two parameters, ¢o and ¢1,
and is defined by:

Pr(y = llz) = sig[go + ¢12], (6.21)

where sig[e] is the logistic sigmoid function:

1

= e d (6.22)

sig[2]

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 95

Loss, L[¢]

® ¢ ¢

Figure 6.11 Three 1D loss functions for problem 6.6.

(i) Plot y against z for this model for different values of ¢¢ and ¢1 and explain the qualitative
meaning of each parameter. (ii) What is a suitable loss function for this model? (iii) Compute
the derivatives of this loss function with respect to the parameters. (iv) Generate ten data
points from a normal distribution with mean -1 and standard deviation 1 and assign them the
label y = 0. Generate another ten data points from a normal distribution with mean 1 and
standard deviation 1 and assign these the label y = 1. Plot the loss as a heatmap in terms of
the two parameters ¢o and ¢1. (v) Is this loss function convex? How could you prove this?

Problem 6.5 Compute the derivatives of the least squares loss with respect to the ten param-
eters of the simple neural network model introduced in equation 3.1:

flz, ¢] = ¢o + pra[fi0 + Or12] + Ppoalfao + O212] + P3a[f30 + O31]. (6.23)
Think carefully about what the derivative of the ReLU function a[e] will be.

Problem 6.6 Which of the functions in figure 6.11 is convex? Justify your answer. Characterize
each of the points 1-7 as (i) a local minimum, (ii) the global minimum, or (iii) neither.

Problem 6.7" The gradient descent trajectory for path 1 in figure 6.5a oscillates back and forth
inefficiently as it moves down the valley toward the minimum. It’s also notable that it turns at
right angles to the previous direction at each step. Provide a qualitative explanation for these
phenomena. Propose a solution that might help prevent this behavior.

Problem 6.8 Can (non-stochastic) gradient descent with a fized learning rate escape local
minima?

Problem 6.9 We run the stochastic gradient descent algorithm for 1,000 iterations on a dataset
of size 100 with a batch size of 20. For how many epochs did we train the model?

Problem 6.10 Show that the momentum term m; (equation 6.11) is an infinite weighted sum
of the gradients at the previous iterations and derive an expression for the coefficients (weights)
of that sum.

Problem 6.11 What dimensions will the Hessian have if the model has one million parameters?

Draft: please send errata to udlbookmail@gmail.com.

7.1

Chapter 7

Gradients and initialization

Chapter 6 introduced iterative optimization algorithms. These are general-purpose meth-
ods for finding the minimum of a function. In the context of neural networks, they find
parameters that minimize the loss so that the model accurately predicts the training
outputs from the inputs. The basic approach is to choose initial parameters randomly
and then make a series of small changes that decrease the loss on average. Each change is
based on the gradient of the loss with respect to the parameters at the current position.

This chapter discusses two issues that are specific to neural networks. First, we
consider how to calculate the gradients efficiently. This is a serious challenge since the
largest models at the time of writing have ~10'? parameters, and the gradient needs to
be computed for every parameter at every iteration of the training algorithm. Second,
we consider how to initialize the parameters. If this is not done carefully, the initial
losses and their gradients can be extremely large or small. In either case, this impedes
the training process.

Problem definitions

Consider a network f[x, ¢] with multivariate input x, parameters ¢, and three hidden
layers hy, ho, and hg:

h, = a[8,+ Qox]
hy = alf; +Qihy]
hy = al@, + Q:2hy]
fix,¢] = B3+ Qshs, (7.1)

where the function afe] applies the activation function separately to every element of the
input. The model parameters ¢ = {3, Qo, 81, R, By, Va2, B3, N3} consist of the bias
vectors B, and weight matrices Q2 between every layer (figure 7.1).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.2

7.2 Computing derivatives 97

We also have individual loss terms ¢;, which return the negative log-likelihood of
the ground truth label y; given the model prediction f[x;, @] for training input x;. For
example, this might be the least squares loss ¢; = (f[x;, ¢] — y;)?>. The total loss is the
sum of these terms over the training data:

Ligl =)t (7.2)

The most commonly used optimization algorithm for training neural networks is
stochastic gradient descent (SGD), which updates the parameters as:

oL, [¢t]

rra (7.3)

¢t+1<—¢t_az

1E€EB

where « is the learning rate, and B; contains the batch indices at iteration ¢. To compute
this update, we need to calculate the derivatives:

ol and ot
81@k 8Qk; ’

for the parameters {3, } at every layer k € {0,1,..., K} and for each index i in
the batch. The first part of this chapter describes the backpropagation algorithm, which
computes these derivatives efficiently.

In the second part of the chapter, we consider how to initialize the network parameters
before we commence training. We describe methods to choose the initial weights €2, and
biases B, so that training is stable.

(7.4)

Computing derivatives

The derivatives of the loss tell us how the loss changes when we make a small change
to the parameters. Optimization algorithms exploit this information to manipulate the
parameters so that the loss becomes smaller. The backpropagation algorithm computes
these derivatives. The mathematical details are somewhat involved, so we first make two
observations that provide some intuition.

Observation 1: Each weight (element of €;) multiplies the activation at a source hidden
unit and adds the result to a destination hidden unit in the next layer. It follows that the
effect of any small change to the weight is amplified or attenuated by the activation at
the source hidden unit. Hence, we run the network for each data example in the batch
and store the activations of all the hidden units. This is known as the forward pass
(figure 7.1). The stored activations will subsequently be used to compute the gradients.

Observation 2: A small change in a bias or weight causes a ripple effect of changes
through the subsequent network. The change modifies the value of its destination hidden

Draft: please send errata to udlbookmail@gmail.com.

Problem 7.1

98 7 Gradients and initialization

Training
o Q ! £ {23 output, y

O O

O O
O O ®
O O O O

Training Hidden Hidden Hidden Output,

input, x layer, h; layer, hy layer, hs fix, ¢| Loss, £

Figure 7.1 Backpropagation forward pass. The goal is to compute the derivatives
of the loss £ with respect to each of the weights (arrows) and biases (not shown).
In other words, we want to know how a small change to each parameter will affect
the loss. Each weight multiplies the hidden unit at its source and contributes the
result to the hidden unit at its destination. Consequently, the effects of any small
change to the weight will be scaled by the activation of the source hidden unit.
For example, the blue weight is applied to the second hidden unit at layer 1; if
the activation of this unit doubles, then the effect of a small change to the blue
weight will double too. Hence, to compute the derivatives of the weights, we need
to calculate and store the activations at the hidden layers. This is known as the
forward pass since it involves running the network equations sequentially.

unit. This, in turn, changes the values of the hidden units in the subsequent layer, which
will change the hidden units in the layer after that, and so on, until a change is made to
the model output and, finally, the loss.

Hence, to know how changing a parameter modifies the loss, we also need to know
how changes to every subsequent hidden layer will, in turn, modify their successor. These
same quantities are required when considering other parameters in the same or earlier
layers. It follows that we can calculate them once and reuse them. For example, consider
computing the effect of a small change in weights that feed into hidden layers hs, hs,
and h;, respectively:

e To calculate how a small change in a weight or bias feeding into hidden layer hg
modifies the loss, we need to know (i) how a change in layer hs changes the model
output f, and (ii) how a change in this output changes the loss ¢ (figure 7.2a).

e To calculate how a small change in a weight or bias feeding into hidden layer hy
modifies the loss, we need to know (i) how a change in layer hy affects hs, (ii) how hj
changes the model output, and (iii) how this output changes the loss (figure 7.2b).

o To calculate how a small change in a weight or bias feeding into hidden layer h;
modifies the loss, we need to know (i) how a change in layer h; affects layer h,
(ii) how a change in layer hy affects layer hg, (iii) how layer hs changes the model
output, and (iv) how the model output changes the loss (figure 7.2c).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.2 Computing derivatives 99

a)Q Q0 8 Q, . Q, Qs ﬂ
O 5 O)
b)
O O
O O %20\
8 &, Qé O ©
O
c)
O O
O
O
e e e QP Loss s

Figure 7.2 Backpropagation backward pass. a) To compute how a change to
a weight feeding into layer hs (blue arrow) changes the loss, we need to know
how the hidden unit in hs changes the model output f and how f changes the
loss (orange arrows). b) To compute how a small change to a weight feeding
into hs (blue arrow) changes the loss, we need to know (i) how the hidden unit
in hy changes hs, (ii) how hs changes f, and (iii) how f changes the loss (orange
arrows). c) Similarly, to compute how a small change to a weight feeding into h;
(blue arrow) changes the loss, we need to know how h; changes h, and how
these changes propagate through to the loss (orange arrows). The backward pass
first computes derivatives at the end of the network and then works backward to
exploit the inherent redundancy of these computations.

Draft: please send errata to udlbookmail@gmail.com.

7.3

100 7 Gradients and initialization

As we move backward through the network, we see that most of the terms we need
were already calculated in the previous step, so we do not need to re-compute them.
Proceeding backward through the network in this way to compute the derivatives is
known as the backward pass.

The ideas behind backpropagation are relatively easy to understand. However, the
derivation requires matrix calculus because the bias and weight terms are vectors and
matrices, respectively. To help grasp the underlying mechanics, the following section
derives backpropagation for a simpler toy model with scalar parameters. We then apply
the same approach to a deep neural network in section 7.4.

Toy example

Consider a model f[z, ¢] with eight scalar parameters ¢ = {fo, wo, f1, w1, B2, wa, B3, ws}
that consists of a composition of the functions sin[e], exp[e], and cos[e]:

flz, @] = B3 + ws - cos [ﬁz + wa - exp[f1 + w1 - sin[By + wo - ar]]] ; (7.5)

and a least squares loss function L{¢] = >, ¢; with individual terms:

= (flzi, @] = v:)*, (7.6)

where, as usual, ; is the i*" training input, and y; is the i*" training output. You can

think of this as a simple neural network with one input, one output, one hidden unit at

each layer, and different activation functions sin[e], exp[e], and cos[e] between each layer.
We aim to compute the derivatives:

ov; ov; ov; ov; ov; ov; ov; and ov;
By’ Owy’ P17 Owi OBy’ Ows’ 0P Ows”

Of course, we could find expressions for these derivatives by hand and compute them
directly. However, some of these expressions are quite complex. For example:

o,
awo

= -2 (53 + w3 - cos {52 + wy - exp[B1 + w1 - sin[By + wo - 951}]} - yz>
‘Wiwaws - T - cos[By + wo - x;] - exp {51 + w1 - sin[By + wo xz]}

-sin {52 + wy - exp [51 + ws - sinfBy + wo - :EZ]H . (7.7)

Such expressions are awkward to derive and code without mistakes and do not exploit
the inherent redundancy; notice that the three exponential terms are the same.

The backpropagation algorithm is an efficient method for computing all of these
derivatives at once. It consists of (i) a forward pass, in which we compute and store a
series of intermediate values and the network output, and (ii) a backward pass, in which

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.3 Toy example 101

N N (T
Er—@ ===~ —)——®

Figure 7.3 Backpropagation forward pass. We compute and store each of the
intermediate variables in turn until we finally calculate the loss.

we calculate the derivatives of each parameter, starting at the end of the network, and
reusing previous calculations as we move toward the start.

Forward pass: We treat the computation of the loss as a series of calculations:

fo = Botwo-x

hi = sin[fy]

fi = Bitwi-m

he = exp[fi]

fo = Batwr-ho

hs = cos|fs]

fs = Bz+ws-hs

o= (fs—u) (7.8)

We compute and store the values of the intermediate variables f;, and hy, (figure 7.3).

Backward pass #1: We now compute the derivatives of £; with respect to these inter-
mediate variables, but in reverse order:

O oL oL oL oL Ok 0k o)
9fs’ Ohs’ 0fs Ohs' Ofi0 Ohy afo’ ‘

The first of these derivatives is straightforward:

o,

— =2(f3 —). 7.10
o7 = 2= w) (7.10)
The next derivative can be calculated using the chain rule:
ol 0fs 0¢;
= — . 7.11
Ohs Ohs Ofs (7.11)

The left-hand side asks how ¢; changes when hs changes. The right-hand side says we can
decompose this into (i) how f3 changes when hg changes and (ii) how ¢; changes when f3
changes. In the original equations, hg changes f3, which changes ¢;, and the derivatives

Draft: please send errata to udlbookmail@gmail.com.

102 7 Gradients and initialization

Oh1 of1 Ohso Ofa Ohs Jfs
90, _9fo Ohy 0f1 Oho 0fa Ohs
Ifo

Figure 7.4 Backpropagation backward pass #1. We work backward from the end
of the function computing the derivatives 9¢;/0feo and 0¢;/Ohe of the loss with
respect to the intermediate quantities. Each derivative is computed from the
previous one by multiplying by terms of the form 9 f/dhi or Ohy /O fr—1.

represent the effects of this chain. Notice that we already computed the second of these
derivatives, and the other is the derivative of 53 4+ w3 - hy with respect to h3, which is ws.

We continue in this way, computing the derivatives of the output with respect to
these intermediate quantities (figure 7.4):

a6, Ohs (Ofs 04

of: — Ofs (ahsafg)

o0 Ofy [Ohs Ofs OU;

dhy — Ohs (%%8]%)

ol; Ohy (0fs Ohz Of3 OL;

ofi oh (8712(%3}135f3>

or; df1 [Oho Ofs Ohg Ofs O;

ohy — Ohy (%%%%%)

O _ Oy (05 s 01, 0y 01 6 -
dfo 0fo \Ohy Of1 Ohg Ofs Oh3 Of3

In each case, we have already computed the quantities in the brackets in the previous
step, and the last term has a simple expression. These equations embody Observation 2
from the previous section (figure 7.2); we can reuse the previously computed derivatives
if we calculate them in reverse order.

Problem 7.2

Backward pass #2: Finally, we consider how the loss ¢; changes when we change the
parameters B, and we. Once more, we apply the chain rule (figure 7.5):

o Oy ol
0Bk 0Bk Ofk

o, ofy oL,

o = B ol (7.13)

In each case, the second term on the right-hand side was computed in equation 7.12.
When k > 0, we have fi = B + wg - hg, so:

%*1 and 203 = hyg. (7.14)

B Owy,

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.4 Backpropagation algorithm 103

Figure 7.5 Backpropagation backward pass #2. Finally, we compute the deriva-
tives 0¢;/0Be and Ol;/Ow.. Each derivative is computed by multiplying the
term 0¢; /0 fi. by O fi/0Bk or Ofr/Owr as appropriate.

This is consistent with Observation 1 from the previous section; the effect of a change
in the weight wy, is proportional to the value of the source variable hy (which was stored

in the forward pass). The final derivatives from the term fy = By + w - x; are: i
Notebook 7.1

Backpropagation

in toy model
ofo ’

9fo _ 1 and x;. (7.15)

B0 B Owg

Backpropagation is both simpler and more efficient than computing the derivatives in-
dividually, as in equation 7.7.!

7.4 Backpropagation algorithm

Now we repeat this process for a three-layer network (figure 7.1). The intuition and much
of the algebra are identical. The main differences are that intermediate variables fy, hy,
are vectors, the biases 8, are vectors, the weights €2 are matrices, and we are using
ReLU functions rather than simple algebraic functions like cos|e].

Forward pass: We write the network as a series of sequential calculations:

fo = B+ Qoxi

h; = a[fy]

i = B+

hy, = alfj]

£ = B+ Qho

h; = a|fy]

f3 = B3+ Qhs

L= A (7.16)

INote that we did not actually need the derivatives dl; /9hy, of the loss with respect to the activations.
In the final backpropagation algorithm, we will not compute these explicitly.

Draft: please send errata to udlbookmail@gmail.com.

104 7 Gradients and initialization

2.0
Figure 7.6 Derivative of rectified linear

unit. The rectified linear unit (orange . .
curve) returns zero when the input is ORelU[2]
less than zero and returns the input oth- 0z
erwise. Its derivative (cyan curve) re-
turns zero when the input is less than
zero (since the slope here is zero) and
one when the input is greater than zero
(since the slope here is one).

RelU[z]

Output

-2.0 -
-2.0 0.0 2.0

Input, z

where f;,_; represents the pre-activations at the k** hidden layer (i.e., the values before
the ReLU function afe]) and hy, contains the activations at the k** hidden layer (i.e., after
the ReLU function). The term 1[fs, y;] represents the loss function (e.g., least squares or
binary cross-entropy loss). In the forward pass, we work through these calculations and
store all the intermediate quantities.

Backward pass #1: Now let’s consider how the loss changes when we modify the pre-
activations fy, f,fs. Applying the chain rule, the expression for the derivative of the

Appendix B.5 . .
bl loss ¢; with respect to fy is:

Matrix calculus
ot; dhg ofs Ot;
of, Of, Ohs Ofs

The three terms on the right-hand side have sizes D3 x D3, D3 x Dy, and Dy x 1,
respectively, where D3 is the number of hidden units in the third layer, and Dy is the
dimensionality of the model output fs.

Similarly, we can compute how the loss changes when we change f; and fj:

(7.17)

0l _ by Of (‘m‘afg’agi> (7.18)
of, Of, Ohy \ Of; Oh Of;

ot _ Oh Ofy <5h28f25hﬁf3%> , (7.19)
of, Ofy Oh, \ Of; Ohy Of; Ohy Of

Note that in each case, the term in brackets was computed in the previous step. By
working backward through the network, we can reuse the previous computations.

Moreover, the terms themselves are simple. Working backward through the right-
hand side of equation 7.17, we have:

Problem 7.3

Problems 7.4-7.5

o The derivative 9¢;/0f5 of the loss ¢; with respect to the network output f3 will
depend on the loss function but usually has a simple form.

o The derivative 0f3/0hs of the network output with respect to hidden layer hs is:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.4 Backpropagation algorithm 105

8f3 8 T

ah3 81’13 (1@3 + 83 3) 3 ()
If you are unfamiliar with matrix calculus, this result is not obvious. It is explored
in problem 7.6.

o The derivative Ohg/0fs of the output hs of the activation function with respect to
its input f will depend on the activation function. It will be a diagonal matrix
since each activation only depends on the corresponding pre-activation. For ReLU
functions, the diagonal terms are zero everywhere f; is less than zero and one
otherwise (figure 7.6). Rather than multiply by this matrix, we extract the diagonal
terms as a vector I[fy > 0] and pointwise multiply, which is more efficient.

The terms on the right-hand side of equations 7.18 and 7.19 have similar forms. As
we progress back through the network, we alternately (i) multiply by the transpose of
the weight matrices €} and (ii) threshold based on the inputs f,_; to the hidden layer.
These inputs were stored during the forward pass.

Backward pass #2: Now that we know how to compute 9¢;/0f), we can focus on
calculating the derivatives of the loss with respect to the weights and biases. To calculate
the derivatives of the loss with respect to the biases 3,, we again use the chain rule:

o, ofy, o¢;

dB,, 08, o,

0 ol;
= 28, (B, + Qihy) o,
or;
p— — -21
oL, (7.21)

which we already calculated in equations 7.17 and 7.18.
Similarly, the derivative for the weights vector €2, is given by:

ol; ofy, 0¢;
oy, oy, ofy,

0 o¢;
= o (B + Qhy) ot

o
A g
= g hi (7.22)

Again, the progression from line two to line three is not obvious and is explored in
problem 7.9. However, the result makes sense. The final line is a matrix of the same size
as . It depends linearly on hy, which was multiplied by €} in the original expression.
This is also consistent with the initial intuition that the derivative of the weights in €2y,
will be proportional to the values of the hidden units hy that they multiply. Recall that
we already computed these during the forward pass.

Draft: please send errata to udlbookmail@gmail.com.

Problem 7.6

Problems 7.7-7.8

Problem 7.9

7.4.1

Problem 7.10

Notebook 7.2

Backpropagation
(=)

7.4.2

106 7 Gradients and initialization

Backpropagation algorithm summary

We now briefly summarize the final backpropagation algorithm. Consider a deep neural
network f[x;, @] that takes input x;, has K hidden layers with ReLU activations, and
individual loss term ¢; = 1[f[x;, ¢],y;]. The goal of backpropagation is to compute the
derivatives 0¢; /008, and 0¢; /08, with respect to the biases 3;, and weights Q.

Forward pass: We compute and store the following quantities:

fO = ﬂO +QOXi
h, = a[fkfl] ke {1,2,...,K}
f, = B+ Qhyg. ke {1,2,...,K} (723)

Backward pass: We start with the derivative 9¢; /0fk of the loss function ¢; with respect
to the network output fx and work backward through the network:

o, o¢;

— ke{K,K—1,....,1
B, o, € {K, -
l; l;
i ‘pT KK-1,....1
ank (9fk; k ke{) ’ a}
o, l;
L= T[fe_; >0 Qr— ke {K,K—-1,...,1 7.24
8fk_1 [lc 1>]@(k&&)’ 6{)) 7} ()

where ® denotes pointwise multiplication, and I[f;_; > 0] is a vector containing ones
where fj,_; is greater than zero and zeros elsewhere. Finally, we compute the derivatives
with respect to the first set of biases and weights:

o, oL
o8, 0

o, ol 4

0 afoxi. (7.25)

We calculate these derivatives for every training example in the batch and sum them
together to retrieve the gradient for the SGD update.

Note that the backpropagation algorithm is extremely efficient; the most demanding
computational step in both the forward and backward pass is matrix multiplication (by €
and Q7T respectively) which only requires additions and multiplications. However, it is
not memory efficient; the intermediate values in the forward pass must all be stored, and
this can limit the size of the model we can train.

Algorithmic differentiation
Although it’s important to understand the backpropagation algorithm, it’s unlikely that

you will need to code it in practice. Modern deep learning frameworks such as PyTorch

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.4.3

7.5

7.5 Parameter initialization 107

and TensorFlow calculate the derivatives automatically, given the model specification.
This is known as algorithmic differentiation.

Each functional component (linear transform, ReLU activation, loss function) in the
framework knows how to compute its own derivative. For example, the PyTorch ReLU
function z,,; = relufz;,] knows how to compute the derivative of its output z,,: with
respect to its input z;,. Similarly, a linear function z,,; = B + Qz;, knows how to
compute the derivatives of the output z,,; with respect to the input z;, and with re-
spect to the parameters B and Q. The algorithmic differentiation framework also knows
the sequence of operations in the network and thus has all the information required to
perform the forward and backward passes.

These frameworks exploit the massive parallelism of modern graphics processing units
(GPUs). Computations such as matrix multiplication (which features in both the forward
and backward pass) are naturally amenable to parallelization. Moreover, it’s possible to
perform the forward and backward passes for the entire batch in parallel if the model
and intermediate results in the forward pass do not exceed the available memory.

Since the training algorithm now processes the entire batch in parallel, the input
becomes a multi-dimensional tensor. In this context, a tensor can be considered the
generalization of a matrix to arbitrary dimensions. Hence, a vector is a 1D tensor, a
matrix is a 2D tensor, and a 3D tensor is a 3D grid of numbers. Until now, the training
data have been 1D, so the input for backpropagation would be a 2D tensor where the
first dimension indexes the batch element and the second indexes the data dimension.
In subsequent chapters, we will encounter more complex structured input data. For
example, in models where the input is an RGB image, the original data examples are
3D (height x width x channel). Here, the input to the learning framework would be a
4D tensor, where the extra dimension indexes the batch element.

Extension to arbitrary computational graphs

We have described backpropagation in a deep neural network that is naturally sequential;
we calculate the intermediate quantities fy,hy,f;,hy... fi in turn. However, models
need not be restricted to sequential computation. Later in this book, we will meet
models with branching structures. For example, we might take the values in a hidden
layer and process them through two different sub-networks before recombining.

Fortunately, the ideas of backpropagation still hold if the computational graph is
acyclic. Modern algorithmic differentiation frameworks such as PyTorch and TensorFlow
can handle arbitrary acyclic computational graphs.

Parameter initialization

The backpropagation algorithm computes the derivatives that are used by stochastic
gradient descent and Adam to train the model. We now address how to initialize the
parameters before we start training. To see why this is crucial, consider that during the
forward pass, each set of pre-activations fj is computed as:

Draft: please send errata to udlbookmail@gmail.com.

Problem 7.11

Problems 7.12-7.13

7.5.1

108 7 Gradients and initialization

f = B+ Qhy
= By + Qalfi_1], (7.26)

where a[e] applies the ReLU functions and €2, and 3, are the weights and biases, respec-
tively. Imagine that we initialize all the biases to zero and the elements of €2, according
to a normal distribution with mean zero and variance 2. Consider two scenarios:

o If the variance o2 is very small (e.g., 107°), then each element of 3, + £ h;. will be
a weighted sum of h; where the weights are very small; the result will likely have
a smaller magnitude than the input. In addition, the ReLLU function clips values
less than zero, so the range of hy will be half that of fy_;. Consequently, the
magnitudes of the pre-activations at the hidden layers will get smaller and smaller
as we progress through the network.

o If the variance o2 is very large (e.g., 10°), then each element of 3, + Qihy, will be

a weighted sum of hy where the weights are very large; the result is likely to have
a much larger magnitude than the input. The ReLU function halves the range of
the inputs, but if 02 is large enough, the magnitudes of the pre-activations will still
get larger as we progress through the network.

In these two situations, the values at the pre-activations can become so small or so large
that they cannot be represented with finite precision floating point arithmetic.

Even if the forward pass is tractable, the same logic applies to the backward pass.
Each gradient update (equation 7.24) consists of multiplying by Q7. If the values of Q
are not initialized sensibly, then the gradient magnitudes may decrease or increase un-
controllably during the backward pass. These cases are known as the vanishing gradient
problem and the exploding gradient problem, respectively. In the former case, updates to
the model become vanishingly small. In the latter case, they become unstable.

Initialization for forward pass

We now present a mathematical version of the same argument. Consider the computation
between adjacent pre-activations f and f’ with dimensions Dy, and Dy, respectively:

h = alf],
f = B+Qh (7.27)

where f represents the pre-activations, €, and B represent the weights and biases,
and afe] is the activation function.

Assume the pre-activations f; in the input layer f have variance aj%. Consider ini-
tializing the biases 3; to zero and the weights {);; as normally distributed with mean
zero and variance 03. Now we derive expressions for the mean and variance of the

pre-activations f’ in the subsequent layer.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.5 Parameter initialization

109

The expectation (mean) E[f;] of the intermediate values f; is:

Dy,
E[f]] = E|[Bi+Y Qjh;

=1

= E[Bi]+ Zh:E (5]

j=1

= BB+ 3 EOER]

Dy,
= 0+) 0-E[h]=0,
j=1

where Dy, is the dimensionality of the input layer h. We have used the rules for manipu-

lating expectations, and we have assumed that the distributions over the hidden units h;

and the network weights €2;; are independent between the second and third lines.
Using this result, we see that the variance 0]20/ of the pre-activations f/ is:

o}, = E[f’] -E[f]]?
Dh 2
= E||Bi+> Qhi| | -0
j=1
- 2
Dy,
= E||D Qh
j=1
Dy,
= D _E[Q}]E [n]]
j=1
Dy, Dy,
= D oE[R] =0t > E[h],
j=1 j=1

where we have used the variance identity o? = E[(z — E[2])?] = E[2?] — E[z]2. We have
assumed once more that the distributions of the weights €2;; and the hidden units h; are

independent between lines three and four.

Appendix C.2
Expectation

(7.28)

Appendix C.2.1
Expectation rules

(7.29)

Appendix C.2.3
Variance identity

Assuming that the input distribution of pre-activations f; is symmetric about zero,
half of these pre-activations will be clipped by the ReL U function, and the second moment

E[h;]* will be half the variance o} of f; (see problem 7.14):

Dy, O'; 1
O’?/ = o}, Z 5 = iDhU%J?.
j=1

Draft: please send errata to udlbookmail@gmail.com.

Problem 7.14

(7.30)

110 7 Gradients and initialization

a) o Forward pass b) Backward pass
0.1
N.; 0
10 %2
0.01
0.001
107 10100
0 50 0 50

75 25

Layer, k& Layer, k&

Figure 7.7 Weight initialization. Consider a deep network with 50 hidden layers
and Dj = 100 hidden units per layer. The network has a 100-dimensional input x
initialized from a standard normal distribution, a single fixed target y = 0, and
a least squares loss function. The bias vectors 3, are initialized to zero, and the
weight matrices €2 are initialized with a normal distribution with mean zero and
five different variances o € {0.001,0.01,0.02,0.1,1.0}. a) Variance of hidden
unit activations computed in forward pass as a function of the network layer. For
He initialization (c& = 2/Dj, = 0.02), the variance is stable. However, for larger
values, it increases rapidly, and for smaller values, it decreases rapidly (note
log scale). b) The variance of the gradients in the backward pass (solid lines)
continues this trend; if we initialize with a value larger than 0.02, the magnitude
of the gradients increases rapidly as we pass back through the network. If we
initialize with a value smaller, then the magnitude decreases. These are known
as the exploding gradient and vanishing gradient problems, respectively.

This, in turn, implies that if we want the variance UJ%, of the subsequent pre-activations f’

to be the same as the variance UJ% of the original pre-activations f during the forward
pass, we should set:

2

where Dy, is the dimension of the original layer to which the weights were applied. This
is known as He initialization.

7.5.2 Initialization for backward pass
A similar argument establishes how the variance of the gradients 9l/0 f; changes during

the backward pass. During the backward pass, we multiply by the transpose Q7 of the
weight matrix (equation 7.24), so the equivalent expression becomes:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

7.5.3

7.6

1.7

7.6 Example training code 111

2
Dh/7

where Dy is the dimension of the layer that the weights feed into.

o = (7.32)

Initialization for both forward and backward pass

If the weight matrix € is not square (i.e., there are different numbers of hidden units
in the two adjacent layers, so Dy, and Dy differ), then it is not possible to choose the
variance to satisfy both equations 7.31 and 7.32 simultaneously. One possible compromise
is to use the mean (Dj, + Dy/)/2 as a proxy for the number of terms, which gives:

4
Dy, + Dy, '
Figure 7.7 shows empirically that both the variance of the hidden units in the forward

pass and the variance of the gradients in the backward pass remain stable when the
parameters are initialized appropriately.

o3 = (7.33)

Example training code

The primary focus of this book is scientific; this is not a guide for implementing deep
learning models. Nonetheless, in figure 7.8, we present PyTorch code that implements
the ideas explored in this book so far. The code defines a neural network and initializes
the weights. It creates random input and output datasets and defines a least squares loss
function. The model is trained from the data using SGD with momentum in batches of
size 10 over 100 epochs. The learning rate starts at 0.01 and halves every 10 epochs.

The takeaway is that although the underlying ideas in deep learning are quite com-
plex, implementation is relatively simple. For example, all of the details of the back-
propagation are hidden in the single line of code: loss.backward().

Summary

The previous chapter introduced stochastic gradient descent (SGD), an iterative opti-
mization algorithm that aims to find the minimum of a function. In the context of neural
networks, this algorithm finds the parameters that minimize the loss function. SGD re-
lies on the gradient of the loss function with respect to the parameters, which must be
initialized before optimization. This chapter has addressed these two problems for deep
neural networks.

The gradients must be evaluated for a very large number of parameters, for each
member of the batch, and at each SGD iteration. It is hence imperative that the gradient

Draft: please send errata to udlbookmail@gmail.com.

Problem 7.15

Notebook 7.3
Initialization

Problems 7.16-7.17

112 7 Gradients and initialization

import torch, torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
from torch.optim.lr_scheduler import StepLR

define input size, hidden layer size, output size
D_i, D_k, D_o = 10, 40, 5
create model with two hidden layers
model = nn.Sequential(
nn.Linear(D_i, D_k),

nn.ReLUQ),
nn.Linear(D_k, D_k),
nn.RelLU(Q),
nn.Linear(D_k, D_o))

He initialization of weights
def weights_init(layer_in):
if isinstance(layer_in, nn.Linear):
nn.init.kaiming uniform(layer_in.weight)
layer_in.bias.data.fill_(0.0)
model.apply(weights_init)

choose least squares loss function

criterion = nn.MSELoss()

construct SGD optimizer and initialize learning rate and momentum
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1, momentum=0.9)
object that decreases learning rate by half every 10 epochs
scheduler = StepLR(optimizer, step_size=10, gamma=0.5)

create 100 random data points and store in data loader class

x = torch.randn(100, D_i)

y = torch.randn(100, D_o)

data_loader = Dataloader(TensorDataset(x,y), batch_size=10, shuffle=True)

loop over the dataset 100 times
for epoch in range(100):
epoch_loss = 0.0
loop over batches
for i, data in enumerate(data_loader):
retrieve inputs and labels for this batch
x_batch, y_batch = data
zero the parameter gradients
optimizer.zero_grad()
forward pass
pred = model(x_batch)
loss = criterion(pred, y_batch)
backward pass
loss.backward()
SGD update
optimizer.step()
update statistics
epoch_loss += loss.item()
print error
print (f'Epoch {epoch:5d}, loss {epoch_loss:.3f}')
tell scheduler to consider updating learning rate
scheduler.step()

Figure 7.8 Sample code for training two-layer network on random data.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 113

computation is efficient, and to this end, the backpropagation algorithm was introduced.
Careful parameter initialization is also critical. The magnitudes of the hidden unit
activations can either decrease or increase exponentially in the forward pass. The same
is true of the gradient magnitudes in the backward pass, where these behaviors are known
as the vanishing gradient and exploding gradient problems. Both impede training but
can be avoided with appropriate initialization.

We've now defined the model and the loss function, and we can train a model for a
given task. The next chapter discusses how to measure the model performance.

Notes

Backpropagation: Efficient reuse of partial computations while calculating gradients in com-
putational graphs has been repeatedly discovered, including by Werbos (1974), Bryson et al.
(1979), LeCun (1985), and Parker (1985). However, the most celebrated description of this
idea was by Rumelhart et al. (1985) and Rumelhart et al. (1986), who also coined the term
“backpropagation.” This latter work kick-started a new phase of neural network research in the
eighties and nineties; for the first time, it was practical to train networks with hidden layers.
However, progress stalled due (in retrospect) to a lack of training data, limited computational
power, and the use of sigmoid activations. Areas such as natural language processing and com-
puter vision did not rely on neural network models until the remarkable image classification
results of Krizhevsky et al. (2012) ushered in the modern era of deep learning.

The implementation of backpropagation in modern deep learning frameworks such as PyTorch
and TensorFlow is an example of reverse-mode algorithmic differentiation. This is distinguished
from forward-mode algorithmic differentiation in which the derivatives from the chain rule
are accumulated while moving forward through the computational graph (see problem 7.13).
Further information about algorithmic differentiation can be found in Griewank & Walther
(2008) and Baydin et al. (2018).

Initialization: He initialization was first introduced by He et al. (2015). It follows closely
from Glorot or Xavier initialization (Glorot & Bengio, 2010), which is very similar but does
not consider the effect of the ReLLU layer and so differs by a factor of two. Essentially the
same method was proposed much earlier by LeCun et al. (2012) but with a slightly different
motivation; in this case, sigmoidal activation functions were used, which naturally normalize the
range of outputs at each layer, and hence help prevent an exponential increase in the magnitudes
of the hidden units. However, if the pre-activations are too large, they fall into the flat regions
of the sigmoid function and result in very small gradients. Hence, it is still important to
initialize the weights sensibly. Klambauer et al. (2017) introduce the scaled exponential linear
unit (SeLU) and show that, within a certain range of inputs, this activation function tends to
make the activations in network layers automatically converge to mean zero and unit variance.

A completely different approach is to pass data through the network and then normalize by the
empirically observed variance. Layer-sequential unit variance initialization (Mishkin & Matas,
2016) is an example of this kind of method, in which the weight matrices are initialized as
orthonormal. GradInit (Zhu et al., 2021) randomizes the initial weights and temporarily fixes
them while it learns non-negative scaling factors for each weight matrix. These factors are
selected to maximize the decrease in the loss for a fixed learning rate subject to a constraint
on the maximum gradient norm. Activation normalization or ActNorm adds a learnable scaling
and offset parameter after each network layer at each hidden unit. They run an initial batch
through the network and then choose the offset and scale so that the mean of the activations is
zero and the variance one. After this, these extra parameters are learned as part of the model.

Draft: please send errata to udlbookmail@gmail.com.

114 7 Gradients and initialization

Closely related to these methods are schemes such as BatchNorm (Ioffe & Szegedy, 2015), in
which the network normalizes the variance of each batch as part of its processing at every
step. BatchNorm and its variants are discussed in chapter 11. Other initialization schemes have
been proposed for specific architectures, including the ConvolutionOrthogonal initializer (Xiao
et al., 2018a) for convolutional networks, Fizup (Zhang et al., 2019a) for residual networks, and
TFizup (Huang et al., 2020a) and DTFizup (Xu et al., 2021b) for transformers.

Reducing memory requirements: Training neural networks is memory intensive. We must
store both the model parameters and the pre-activations at the hidden units for every member
of the batch during the forward pass. Two methods that decrease memory requirements are
gradient checkpointing (Chen et al., 2016a) and micro-batching (Huang et al., 2019). In gradient
checkpointing, the activations are only stored every N layers during the forward pass. During
the backward pass, the intermediate missing activations are recalculated from the nearest check-
point. In this manner, we can drastically reduce the memory requirements at the computational
cost of performing the forward pass twice (problem 7.11). In micro-batching, the batch is sub-
divided into smaller parts, and the gradient updates are aggregated from each sub-batch before
being applied to the network. A completely different approach is to build a reversible network
(e.g., Gomez et al., 2017), in which the activations at the previous layer can be computed from
the activations at the current one, so there is no need to cache anything during the forward pass
(see chapter 16). Sohoni et al. (2019) review approaches to reducing memory requirements.

Distributed training: For sufficiently large models, the memory requirements or total re-
quired time may be too much for a single processor. In this case, we must use distributed
training, in which training takes place in parallel across multiple processors. There are several
approaches to parallelism. In data parallelism, each processor or node contains a full copy of
the model but runs a subset of the batch (see Xing et al., 2015; Li et al., 2020b). The gradients
from each node are aggregated centrally and then redistributed back to each node to ensure
that the models remain consistent. This is known as synchronous training. The synchronization
required to aggregate and redistribute the gradients can be a performance bottleneck, and this
leads to the idea of asynchronous training. For example, in the Hogwild! algorithm (Recht
et al., 2011), the gradient from a node is used to update a central model whenever it is ready.
The updated model is then redistributed to the node. This means that each node may have a
slightly different version of the model at any given time, so the gradient updates may be stale;
however, it works well in practice. Other decentralized schemes have also been developed. For
example, in Zhang et al. (2016a), the individual nodes update one another in a ring structure.

Data parallelism methods still assume that the entire model can be held in the memory of a
single node. Pipeline model parallelism stores different layers of the network on different nodes
and hence does not have this requirement. In a naive implementation, the first node runs the
forward pass for the batch on the first few layers and passes the result to the next node, which
runs the forward pass on the next few layers and so on. In the backward pass, the gradients are
updated in the opposite order. The obvious disadvantage of this approach is that each machine
lies idle for most of the cycle. Various schemes revolving around each node processing micro-
batches sequentially have been proposed to reduce this inefficiency (e.g., Huang et al., 2019;
Narayanan et al., 2021a). Finally, in tensor model parallelism, computation at a single network
layer is distributed across nodes (e.g., Shoeybi et al., 2019). A good overview of distributed
training methods can be found in Narayanan et al. (2021b), who combine tensor, pipeline, and
data parallelism to train a language model with one trillion parameters on 3072 GPUs.

Problems

Problem 7.1 A two-layer network with two hidden units in each layer can be defined as:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 115

Yy = ¢o+ ¢1a[wo1 + Y11a[fo1 + O11z] + Y21a[fo2 + 91258]]

+¢2a[1/102 + 12a[bo1 + 0112 + Y22a[fo2 + 912m]] , (7.34)

where the functions afe] are ReLU functions. Compute the derivatives of the output y with
respect to each of the 13 parameters ¢, , fee, and 1ee directly (i.e., not using the backpropagation
algorithm). The derivative of the ReLU function with respect to its input da[z]/0z is the
indicator function I[z > 0], which returns one if the argument is greater than zero and zero
otherwise (figure 7.6).

Problem 7.2 Find an expression for the final term in each of the five chains of derivatives in
equation 7.12.

Problem 7.3 What size are each of the terms in equation 7.197

Problem 7.4 Calculate the derivative 9¢; /0 f[xi, ¢] for the least squares loss function:

L = (yi — f[xs, P))°. (7.35)

Problem 7.5 Calculate the derivative 9¢;/9f[x;, ¢] for the binary classification loss function:

Ui = —(1—y;)log [1 — sig[f[x, d)]H — yi log [Sig [fx, ﬁb]]]) (7.36)

where the function sig[e] is the logistic sigmoid and is defined as:

. 1
Problem 7.6" Show that for z = 8 + Qh:
82 T
— =0
oh ’

where 9z/0h is a matrix containing the term 9z; /dh; in its i"" column and 5" row. To do this,
first find an expression for the constituent elements 9z;/0h;, and then consider the form that
the matrix 0z/0h must take.

Problem 7.7 Consider the case where we use the logistic sigmoid (see equation 7.37) as an
activation function, so h = sig[f]. Compute the derivative 0h/9f for this activation function.
What happens to the derivative when the input takes (i) a large positive value and (ii) a large
negative value?

Problem 7.8 Consider using (i) the Heaviside function and (ii) the rectangular function as
activation functions:

0 z2<0

) 7.38
1 z>0 ()

Heaviside[z] = {

Draft: please send errata to udlbookmail@gmail.com.

116 7 Gradients and initialization

Figure 7.9 Computational graph for problem 7.12 and problem 7.13. Adapted
from Domke (2010).

and

0 z2<0
rect[z] = ¢ 1 0<z<1. (7.39)
0 z>1

Discuss why these functions are problematic for neural network training with gradient-based
optimization methods.

Problem 7.9" Consider a loss function ¢[f], where f = 8 + Qh. We want to find how the loss
¢ changes when we change €2, which we’ll express with a matrix that contains the derivative
20/0;; at the i'" row and j*" column. Find an expression for df;/0Q;; and, using the chain
rule, show that:

o ot ¢

o0 ~ of (7.40)

Problem 7.10" Derive the equations for the backward pass of the backpropagation algorithm
for a network that uses leaky ReLLU activations, which are defined as:

-z z2<0

afz] = ReLU[z] = {z >0’ (7.41)

where « is a small positive constant (typically 0.1).
Problem 7.11 Consider training a network with fifty layers, where we only have enough memory
to store the pre-activations at every tenth hidden layer during the forward pass. Explain how

to compute the derivatives in this situation using gradient checkpointing.

Problem 7.12* This problem explores computing derivatives on general acyclic computational
graphs. Consider the function:

y = exp [exp[z] + exp[m]z] + sin[exp[z] 4 explz]?]. (7.42)

We can break this down into a series of intermediate computations so that:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 117

fi = expla]

foo= fi

fa = fit+fa

fa = expl[fs]

fs = sin[fs]

y = fat+f5. (7.43)

The associated computational graph is depicted in figure 7.9. Compute the derivative dy/0x
by reverse-mode differentiation. In other words, compute in order:
oy oy By oy By 0w
af5’af47af3’af278f1 oz’

using the chain rule in each case to make use of the derivatives already computed.

(7.44)

Problem 7.13* For the same function in problem 7.42, compute the derivative dy/dz by
forward-mode differentiation. In other words, compute in order:

Oh 0fs Ofs 0fs Ofs 4 Oy

Ox’ Oz’ Oz’ Oz’ Ox’ ox’
using the chain rule in each case to make use of the derivatives already computed. Why do
we not use forward-mode differentiation when we calculate the parameter gradients for deep

networks?

(7.45)

Problem 7.14 Consider a random variable a with variance Var[a] = o and a symmetrical
distribution around the mean E[a] = 0. Prove that if we pass this variable through the ReLU
function:

0 a <0

) 7.46
a a>0 ()

b = ReLUla] = {

then the second moment of the transformed variable is E[b%] = o2 /2.

Problem 7.15 What would you expect to happen if we initialized all of the weights and biases
in the network to zero?

Problem 7.16 Implement the code in figure 7.8 in PyTorch and plot the training loss as a
function of the number of epochs.

Problem 7.17 Change the code in figure 7.8 to tackle a binary classification problem. You will
need to (i) change the targets y so they are binary, (ii) change the network to predict numbers
between zero and one (iii) change the loss function appropriately.

Draft: please send errata to udlbookmail@gmail.com.

Problem 8.1

8.1

Chapter 8

Measuring performance

Previous chapters described neural network models, loss functions, and training algo-
rithms. This chapter considers how to measure the performance of the trained models.
With sufficient capacity (i.e., number of hidden units), a neural network model will often
perform perfectly on the training data. However, this does not necessarily mean it will
generalize well to new test data.

We will see that the test errors have three distinct causes and that their relative
contributions depend on (i) the inherent uncertainty in the task, (ii) the amount of
training data, and (iii) the choice of model. The latter dependency raises the issue of
hyperparameter search. We discuss how to select both the model hyperparameters (e.g.,
the number of hidden layers and the number of hidden units in each) and the learning
algorithm hyperparameters (e.g., the learning rate and batch size).

Training a simple model

We explore model performance using the MNIST-1D dataset (figure 8.1). This con-
sists of ten classes y € {0,1,...,9}, representing the digits 0-9. The data are derived
from 1D templates for each of the digits. Each data example x is created by randomly
transforming one of these templates and adding noise. The full training dataset {x;,y;}
consists of 1 =4000 training examples, each consisting of D; =40 dimensions representing
the horizontal offset at 40 positions. The ten classes are drawn uniformly during data
generation, so there are ~400 examples of each class.

We use a network with D; = 40 inputs and D, = 10 outputs which are passed through
a softmax function to produce class probabilities (see section 5.5). The network has two
hidden layers with D = 100 hidden units each. It is trained using stochastic gradient
descent with batch size 100 and learning rate 0.1 for 6000 steps (150 epochs) with a
multiclass cross-entropy loss (equation 5.24). Figure 8.2 shows that the training error
decreases as training proceeds. The training data are classified perfectly after about
4000 steps. The training loss also decreases, eventually approaching zero.

However, this doesn’t imply that the classifier is perfect; the model might have mem-

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.1 Training a simple model

119

o

” >0 g1 82 33 =1 55 =6 —27 =8 y=9
d)[ulx I
N ES BRI S RN A NSRRI
AL D L)

Figure 8.1 MNIST-1D. a) Templates for 10 classes y € {0,...,9}, based on digits
0-9. b) Training examples x are created by randomly transforming a template
and c) adding noise. d) The horizontal offset of the transformed template is then
sampled at 40 vertical positions. Adapted from (Greydanus, 2020)

Test

0 ' 1?ainiﬁg steb

Train
© 6000

b) 10

Loss

Test

Jrain
0 Training step 6000

Figure 8.2 MNIST-1D results. a) Percent classification error as a function of the
training step. The training set errors decrease to zero, but the test errors do not
drop below ~ 40%. This model doesn’t generalize well to new test data. b) Loss
as a function of the training step. The training loss decreases steadily toward
zero. The test loss decreases at first but subsequently increases as the model
becomes increasingly confident about its (wrong) predictions.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 8.1
MNIST-1D

p(}l’f()l'lll&lll('()

8.2

Problems 8.2-8.3

120 8 Measuring performance

Figure 8.3 Regression function. Solid
black line shows ground truth function.
To generate I training examples {z;,y; },
the input space x € [0,1] is divided
into I equal segments and one sample x;
is drawn from a uniform distribution
within each segment. The correspond-
ing value y; is created by evaluating the
function at z; and adding Gaussian noise

(gray region shows £2 standard devia- ®
tions). The test data are generated in
the same way. -1.0 r
0.0 0.5 1.0

Input, =

orized the training set but be unable to predict new examples. To estimate the true
performance, we need a separate test set of input/output pairs {x;,y;}. To this end, we
generate 1000 more examples using the same process. Figure 8.2a also shows the errors
for this test data as a function of the training step. These decrease as training proceeds,
but only to around 40%. This is better than the chance error rate of 90% error rate but
far worse than for the training set; the model has not generalized well to the test data.

The test loss (figure 8.2b) decreases for the first 1500 training steps but then increases
again. At this point, the test error rate is fairly constant; the model makes the same
mistakes but with increasing confidence. This decreases the probability of the correct
answers and thus increases the negative log-likelihood. This increasing confidence is a
side-effect of the softmax function; the pre-softmax activations are driven to increasingly
extreme values to make the probability of the training data approach one (see figure 5.10).

Sources of error

We now consider the sources of the errors that occur when a model fails to generalize.
To make this easier to visualize, we revert to a 1D linear least squares regression problem
where we know exactly how the ground truth data were generated. Figure 8.3 shows a
quasi-sinusoidal function; both training and test data are generated by sampling input
values in the range [0, 1], passing them through this function, and adding Gaussian noise
with a fixed variance.

We fit a simplified shallow neural net to this data (figure 8.4). The weights and biases
that connect the input layer to the hidden layer are chosen so that the “joints” of the
function are evenly spaced across the interval. If there are D hidden units, then these
joints will be at 0,1/D,2/D,...,(D —1)/D. This model can represent any piecewise
linear function with D equally sized regions in the range [0, 1]. As well as being easy to
understand, this model also has the advantage that it can be fit in closed form without
the need for stochastic optimization algorithms (see problem 8.3). Consequently, we can
guarantee to find the global minimum of the loss function during training.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.2 Sources of error

121

Activation
o
o

hl

hs

Input, z

Input, =

|npll,lt, T

Figure 8.4 Simplified neural network with three hidden units. a) The weights and
biases between the input and hidden layer are fixed (dashed arrows). b—d) They
are chosen so that the hidden unit activations have slope one, and their joints are
equally spaced across the interval, with joints at x = 0, = 1/3, and = = 2/3,
respectively. Modifying the remaining parameters ¢ = {8, w1, w2, w3} can create
any piecewise linear function over z € [0, 1] with joints at 1/3 and 2/3. e-g)

1.0 0.0

Inpu't, z

1000 Input,

Three example functions with different values of the parameters ¢.

Draft: please send errata to udlbookmail@gmail.com.

8.2.1

122 8 Measuring performance

3)1_0 Noise b) Bias c) Variance
//\ 2 ,
/ []
\/ PY []
1.0 : : :
0.0 05 1.0 0.0 05 1.0 0.0 05 10
Input, Input, Input, x

Figure 8.5 Sources of test error. a) Noise. Data generation is noisy, so even if the
model exactly replicates the true underlying function (black line), the noise in the
test data (gray points) means that some error will remain (gray region represents
two standard deviations). b) Bias. Even with the best possible parameters, the
three-region model (cyan line) cannot exactly fit the true function (black line).
This bias is another source of error (gray regions represent signed error). c)
Variance. In practice, we have limited noisy training data (orange points). When
we fit the model, we don’t recover the best possible function from panel (b) but
a slightly different function (cyan line) that reflects idiosyncrasies of the training
data. This provides an additional source of error (gray region represents two
standard deviations). Figure 8.6 shows how this region was calculated.

Noise, bias, and variance

There are three possible sources of error, which are known as noise, bias, and variance
respectively (figure 8.5):

Noise The data generation process includes the addition of noise, so there are multiple
possible valid outputs y for each input « (figure 8.5a). This source of error is insurmount-
able for the test data. Note that it does not necessarily limit the training performance;
we will likely never see the same input = twice during training, so it is still possible to
fit the training data perfectly.

Noise may arise because there is a genuine stochastic element to the data generation
process, because some of the data are mislabeled, or because there are further explanatory
variables that were not observed. In rare cases, noise may be absent; for example,
a network might approximate a function that is deterministic but requires significant
computation to evaluate. However, noise is usually a fundamental limitation on the
possible test performance.

Bias A second potential source of error may occur because the model is not flexible
enough to fit the true function perfectly. For example, the three-region neural network
model cannot exactly describe the quasi-sinusoidal function, even when the parameters
are chosen optimally (figure 8.5b). This is known as bias.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.2.2

8.2 Sources of error 123

Variance We have limited training examples, and there is no way to distinguish sys-
tematic changes in the underlying function from noise in the underlying data. When
we fit a model, we do not get the closest possible approximation to the true underly-
ing function. Indeed, for different training datasets, the result will be slightly different
each time. This additional source of variability in the fitted function is termed variance
(figure 8.5¢). In practice, there might also be additional variance due to the stochastic
learning algorithm, which does not necessarily converge to the same solution each time.

Mathematical formulation of test error

We now make the notions of noise, bias, and variance mathematically precise. Consider
a 1D regression problem where the data generation process has additive noise with vari-
ance o2 (e.g., figure 8.3); we can observe different outputs y for the same input z, so for
each z, there is a distribution Pr(y|z) with expected value (mean) pfz]:

ple) =,y = [el Pr(vfo)i (8.1)

and fixed noise 0 = E, [(u[z] — y[z])?]. Here we have used the notation y[z] to specify
that we are considering the output y at a given input position x.

Now consider a least squares loss between the model prediction f[x, ¢] at position x
and the observed value y[z] at that position:

Lla] = (tflx,@] - yla])’ (8:2)
= (e, 6] = ule]) + (ula] — yla)))
= (e, 6] — ufe))” + 2(tlz, @) — pale]) (ule] — wle)) + (ulz] - vla])®,

where we have both added and subtracted the mean u[x] of the underlying function in
the second line and have expanded out the squared term in the third line.

The underlying function is stochastic, so this loss depends on the particular y[z] we
observe. The expected loss is:

Ey[Llal] = By|(flz, @] pla])” + 2(fle, §] - la]) (ule) ~yla]) + (ule]—ylz])’]
= (tle, @] pla))” + 2(tlz, &) — pla]) (ul] —E, [ylal)) +Ey [(ul)—yls))?]
= (e ¢]—plal)” + 2(fle, @] —pla]) -0+ Ey | (ula)—yle])’]
= (fle, @] — pla])’ + 02, (8.3)

where we have made use of the rules for manipulating expectations. In the second line, we
have distributed the expectation operator and removed it from terms with no dependence
on y[z], and in the third line, we note that the second term is zero since E,[y[z]] = p[z]
by definition. Finally, in the fourth line, we have substituted in the definition of the

Draft: please send errata to udlbookmail@gmail.com.

Appendix C.2
Expectation

Appendix C.2.1
Expectation rules

8.3

124 8 Measuring performance

noise o2. We can see that the expected loss has been broken down into two terms; the
first term is the squared deviation between the model and the true function mean, and
the second term is the noise.

The first term can be further partitioned into bias and variance. The parameters ¢ of
the model [z, ¢] depend on the training dataset D = {x;, y; }, so more properly, we should
write [z, ¢[D]]. The training dataset is a random sample from the data generation
process; with a different sample of training data, we would learn different parameter
values. The expected model output f,,[z] with respect to all possible datasets D is hence:

f,[z] = Ep [f[w, ¢[D]]] (8.4)

Returning to the first term of equation 8.3, we add and subtract f,[z] and expand:

D]l - pla])” (8.5)
((flz, S~ Fula]) + (ula] — pale]))

= (fla, 1D —£,u[w]) " + 2(flr, DY) —Eifa]) (Fula] — ala]) + (Fula] —pala])”.
We then take the expectation with respect to the training dataset D:

(flz, &

2

Ep |(fle, #[D)) - ula])’] = En|(fle, $[D]] — ula])*] + (fula] - ula))”, (8.6)

where we have simplified using similar steps as for equation 8.3. Finally, we substitute
this result into equation 8.3:

Ep [Ey[L{z])| = Ep|(flz, [P)] fule])”] + (Fule] —pla))* + o2, (8.7)
variance bias 1;1::

This equation says that the expected loss after considering the uncertainty in the training
data D and the test data y consists of three additive components. The variance is
uncertainty in the fitted model due to the particular training dataset we sample. The bias
is the systematic deviation of the model from the mean of the function we are modeling.
The noise is the inherent uncertainty in the true mapping from input to output. These
three sources of error will be present for any task. They combine additively for linear
regression with a least squares loss. However, their interaction can be more complex for
other types of problems.

Reducing error

In the previous section, we saw that test error results from three sources: noise, bias,
and variance. The noise component is insurmountable; there is nothing we can do to
circumvent this, and it represents a fundamental limit on model performance. However,
it is possible to reduce the other two terms.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.3.1

8.3.2

8.3.3

8.3 Reducing error 125

Reducing variance

Recall that the variance results from limited noisy training data. Fitting the model
to two different training sets results in slightly different parameters. It follows we can
reduce the variance by increasing the quantity of training data. This averages out the
inherent noise and ensures that the input space is well sampled.

Figure 8.6 shows the effect of training with 6, 10, and 100 samples. For each dataset
size, we show the best-fitting model for three training datasets. With only six samples,
the fitted function is quite different each time: the variance is significant. As we increase
the number of samples, the fitted models become very similar, and the variance reduces.
In general, adding training data almost always improves test performance.

Reducing bias

The bias term results from the inability of the model to describe the true underlying
function. This suggests that we can reduce this error by making the model more flexible.
This is usually done by increasing the model capacity. For neural networks, this means
adding more hidden units and/or hidden layers.

In the simplified model, adding capacity corresponds to adding more hidden units
so that the interval [0, 1] is divided into more linear regions. Figures 8.7a—c show that
(unsurprisingly) this does indeed reduce the bias; as we increase the number of linear
regions to ten, the model becomes flexible enough to fit the true function closely.

Bias-variance trade-off

However, figures 8.7d—f show an unexpected side-effect of increasing the model capac-
ity. For a fixed-size training dataset, the variance term increases as the model capacity
increases. Consequently, increasing the model capacity does not necessarily reduce the
test error. This is known as the bias-variance trade-off.

Figure 8.8 explores this phenomenon. In panels a—c), we fit the simplified three-region
model to three different datasets of fifteen points. Although the datasets differ, the final
model is much the same; the noise in the dataset roughly averages out in each linear
region. In panels d—f), we fit a model with ten regions to the same three datasets. This
model has more flexibility, but this is disadvantageous; the model certainly fits the data
better, and the training error will be lower, but much of the extra descriptive power is
devoted to modeling the noise. This phenomenon is known as overfitting.

We’ve seen that as we add capacity to the model, the bias will decrease, but the
variance will increase for a fixed-size training dataset. This suggests that there is an
optimal capacity where the bias is not too large and the variance is still relatively small.
Figure 8.9 shows how these terms vary numerically for the toy model as we increase
the capacity, using the data from figure 8.8. For regression models, the total expected
error is the sum of the bias and the variance, and this sum is minimized when the model
capacity is four (i.e., with four hidden units and four linear regions).

Draft: please send errata to udlbookmail@gmail.com.

Notebook 8.2
Bias-variance
trade-off

8 Measuring performance

a)1 ; 6 samples e) 10 samples i) 100 samples
S
> e 7 \
a_o.o/' / \] / R
+ Jé \
S r y,
O ‘/ \/ \ L 2P, /‘
0 05 1.0 0.0 05 1.00.0 05 1.0
f)
b)w.o) J)
o\‘
3 / . // X
2 0.0 -/ -// \
=]]
! o
O _/ «J \\7/ -8
00 05 1.0 0.0 05 1.00.0 05 1.0
O g) k)
Y D%
3 / /N 28
2N
S 4 14 |4 Vi
© A 4 Do,
’1'%.0 0.5 1.0 0.0 0.5 1.00.0 05 1.0
d) , h) 1)
o]
200 1 |
g/ v /
o A | y /
’W'Oo.o 0.5 1.0 0.0 0.5 1.00.0 05 1.0
Input, Input, Input, x

Figure 8.6 Reducing variance by increasing training data. a—c) The three-region

model fitted to three different randomly sampled datasets of six points.

The

fitted model is quite different each time. d) We repeat this experiment many
times and plot the mean model predictions (cyan line) and the variance of the
model predictions (gray area shows two standard deviations). e-h) We do the
same experiment, but this time with datasets of size ten. The variance of the
predictions is reduced. i-1) We repeat this experiment with datasets of size 100.
Now the fitted model is always similar, and the variance is small.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.4

8.4 Double descent 127

a)1 , 3 regions b) 5 regions c) 10 regions
iy
=y v
5
e) /
\/
10 — .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
d e f
).))
>
iy
200
+J
>
O
-1.0 . . .
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0

Input, z Input, = Input, =

Figure 8.7 Bias and variance as a function of model capacity. a—c) As we in-
crease the number of hidden units of the toy model, the number of linear regions
increases, and the model becomes able to fit the true function closely; the bias
(gray region) decreases. d-f) Unfortunately, increasing the model capacity has
the side-effect of increasing the variance term (gray region). This is known as the
bias-variance trade-off.

Double descent

In the previous section, we examined the bias-variance trade-off as we increased the
capacity of a model. Let’s now return to the MNIST-1D dataset and see whether this
happens in practice. We use 10,000 training examples, test with another 5,000 examples
and examine the training and test performance as we increase the capacity (number of
parameters) in the model. We train the model with Adam and a step size of 0.005 using
a full batch of 10,000 examples for 4000 steps.

Figure 8.10a shows the training and test error for a neural network with two hid-
den layers as the number of hidden units increases. The training error decreases as the
capacity grows and quickly becomes close to zero. The vertical dashed line represents
the capacity where the model has the same number of parameters as there are training
examples, but the model memorizes the dataset before this point. The test error de-
creases as we add model capacity but does not increase as predicted by the bias-variance
trade-off curve; it keeps decreasing.

In figure 8.10b, we repeat this experiment, but this time, we randomize 15% of the

Draft: please send errata to udlbookmail@gmail.com.

8 Measuring performance

128
a b C
).))
] °
. B
= /\ /\ 1 o\
A °]
500l/7° o] 1 /e 9
ao.
fry / ° (
8 Y) X, /] () /
N 4 N Ny
°® ° ?) °
-1.0 . . o -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
d) e) f)
1.0
°
°
> g , /f\\ f o \?
o . {
=} ° A e ’ / e
Q_OO /e
E ’ \ 7 / R\ “/ (.\\ /
o \])
N Ne ~.
s S @ - -
-1.0 - - — -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, Input, = Input, =
Figure 8.8 Overfitting. a—c) A model with three regions is fit to three different
datasets of fifteen points each. The result is similar in all three cases (i.e., the
variance is low). d—f) A model with ten regions is fit to the same datasets. The
additional flexibility does not necessarily produce better predictions. While these
three models each describe the training data better, they are not necessarily closer
to the true underlying function (black curve). Instead, they overfit the data and
describe the noise, and the variance (difference between fitted curves) is larger.
Figure 8.9 Bias-variance trade-off. The 05
bias and variance terms from equa-
tion 8.7 are plotted as a function of the S ,l
model capacity (number of hidden units c 1
. [0} -]
/ linear regions) in the simplified model o [0 1
using training data from figure 8.8. As o 4]
the capacity increases, the bias (solid or- ‘3‘5 “]
ange line) decreases, but the variance o 4 !
(solid cyan line) increases. The sum of 2 | S
these two terms (dashed gray line) is © \ bias+variance _+*
minimized when the capacity is four. = 1bias ‘\ R __,¢—.’
Sz variance
0.0 T
12

Moldel capacity

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.4.1

8.4 Double descent 129

training labels. Once more, the training error decreases to zero. This time, there is
more randomness, and the model requires almost as many parameters as there are data
points to memorize the data. The test error does show the typical bias-variance trade-off
as we increase the capacity to the point where the model fits the training data exactly.
However, then it does something unexpected; it starts to decrease again. Indeed, if we
add enough capacity, the test loss reduces to below the minimal level that we achieved
in the first part of the curve.

This phenomenon is known as double descent. For some datasets like MNIST, it is
present with the original data (figure 8.10c). For others, like MNIST-1D and CIFAR-100
(figure 8.10d), it emerges or becomes more prominent when we add noise to the labels.
The first part of the curve is referred to as the classical or under-parameterized regime,
and the second part as the modern or over-parameterized regime. The central part where
the error increases is termed the critical regime.

Explanation

The discovery of double descent is recent, unexpected, and somewhat puzzling. It results
from an interaction of two phenomena. First, the test performance becomes temporarily
worse when the model has just enough capacity to memorize the data. Second, the test
performance continues to improve with capacity even after the training performance is
perfect. The first phenomenon is exactly as predicted by the bias-variance trade-off. The
second phenomenon is more confusing; it’s unclear why performance should be better in
the over-parameterized regime, given that there are now not even enough training data
points to constrain the model parameters uniquely.

To understand why performance continues to improve as we add more parameters,
note that once the model has enough capacity to drive the training loss to near zero,
the model fits the training data almost perfectly. This implies that further capacity
cannot help the model fit the training data any better; any change must occur between
the training points. The tendency of a model to prioritize one solution over another as
it extrapolates between data points is known as its inductive bias.

The model’s behavior between data points is critical because, in high-dimensional
space, the training data are extremely sparse. The MNIST-1D dataset has 40 dimensions,
and we trained with 10,000 examples. If this seems like plenty of data, consider what
would happen if we quantized each input dimension into 10 bins. There would be 100
bins in total, constrained by only 10° examples. Even with this coarse quantization,
there will only be one data point in every 103 bins! The tendency of the volume of
high-dimensional space to overwhelm the number of training points is termed the curse
of dimensionality.

The implication is that problems in high dimensions might look more like figure 8.11a;
there are small regions of the input space where we observe data with significant gaps
between them. The putative explanation for double descent is that as we add capacity
to the model, it interpolates between the nearest data points increasingly smoothly. In
the absence of information about what happens between the training points, assuming
smoothness is sensible and will probably generalize reasonably to new data.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 8.3
Double descent

Problems 8.4-8.5

130

8 Measuring performance

MNIST-1D no label noise b) MNIST-1D 15% label noise

1
1
|
: Test
1
1
1
1
I
| Train
0 100 200 300 400 0 100 200 300 400
Hidden layer size Hidden layer size
c d -
)0)., CIFAR100
1
70 |
1
06 60
—_ 1
[} 1
LE g 50 ,
o 0
D04 | ~ a0 : Test 20% noise
had [l e 1
© ! = 30 !
> 1 L 1 ’
g | | Test no noise
1 ! . .
02 | 20 Train 20% noise
1 I
! 10 A\ Trai .
: ! Train) i\[Train no noise
10 100 1000 0 1 20 30 40 5 60 70
Number of parameters x 103 ResNet-18 width parameter

Figure 8.10 Double descent. a) Training and test loss on MNIST-1D for a two-
hidden layer network as we increase the number of hidden units (and hence pa-
rameters) in each layer. The training loss decreases to zero as the number of
parameters approaches the number of training examples (vertical dashed line).
The test error does not show the expected bias-variance trade-off but continues
to decrease even after the model has memorized the dataset. b) The same exper-
iment is repeated with noisier training data. Again, the training error reduces
to zero, although it now takes almost as many parameters as training points to
memorize the dataset. The test error shows the predicted bias/variance trade-off;
it decreases as the capacity increases but then increases again as we near the point
where the training data is exactly memorized. However, it subsequently decreases
again and ultimately reaches a better performance level. This is known as double
descent. Depending on the loss, the model, and the amount of noise in the data,
the double descent pattern can be seen to a greater or lesser degree across many
datasets. c) Results on MNIST (without label noise) with shallow neural network
from Belkin et al. (2019). d) Results on CIFAR-100 with ResNet18 network (see
chapter 11) from Nakkiran et al. (2021). See original papers for details.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.4 Double descent 131

a) b) 6 hidden units c) 7 hidden units

_/ _/‘
; N

—1

1'Oo.o -~ o5 1000 05 1000 05 10
d)1O 8 hidden units e) 10 hidden units ~ f) 50 hidden units
=N /
§_0.o-] 7/
3 4 4 4
_‘) 7
0% 05 1.0 0.0 05 1.00.0 05 1.0
Input, Input, Input,

Figure 8.11 Increasing capacity (hidden units) allows smoother interpolation be-
tween sparse data points. a) Consider this situation where the training data
(orange circles) are sparse; there is a large region in the center with no data ex-
amples to constrain the model to mimic the true function (black curve). b) If we
fit a model with just enough capacity to fit the training data (cyan curve), then it
has to contort itself to pass through the training data, and the output predictions
will not be smooth. c—f) However, as we add more hidden units, the model has
the ability to interpolate between the points more smoothly (smoothest possible
curve plotted in each case). However, unlike in this figure, it is not obliged to.

This argument is plausible. It’s certainly true that as we add more capacity to the
model, it will have the capability to create smoother functions. Figures 8.11b—f show the
smoothest possible functions that still pass through the data points as we increase the
number of hidden units. When the number of parameters is very close to the number
of training data examples (figure 8.11b), the model is forced to contort itself to fit the
training data exactly, resulting in erratic predictions. This explains why the peak in the
double descent curve is so pronounced. As we add more hidden units, the model has the
ability to construct smoother functions that are likely to generalize better to new data.

However, this does not explain why over-parameterized models should produce smooth
functions. Figure 8.12 shows three functions that can be created by the simplified model
with 50 hidden units. In each case, the model fits the data exactly, so the loss is zero. If
the modern regime of double descent is explained by increasing smoothness, then what
exactly is encouraging this smoothness?

Draft: please send errata to udlbookmail@gmail.com.

8.5

132 8 Measuring performance

a) Loss =0 b) Loss =0 C) Loss =0

2/ | / VA
s/ A { _1)’- Ne A

%0 05 1000 05 1000 05 10
Input, Input, = Input, =

Figure 8.12 Regularization. a—c) Each of the three fitted curves passes through
the data points exactly, so the training loss for each is zero. However, we might
expect the smooth curve in panel (a) to generalize much better to new data than
the erratic curves in panels (b) and (c¢). Any factor that biases a model toward
a subset of the solutions with a similar training loss is known as a regularizer.
It is thought that the initialization and/or fitting of neural networks have an
implicit regularizing effect. Consequently, in the over-parameterized regime, more
reasonable solutions, such as that in panel (a), are encouraged.

The answer to this question is uncertain, but there are two likely possibilities. First,
the network initialization may encourage smoothness, and the model never departs from
the sub-domain of smooth function during the training process. Second, the training
algorithm may somehow “prefer” to converge to smooth functions. Any factor that
biases a solution toward a subset of equivalent solutions is known as a regularizer, so one
possibility is that the training algorithm acts as an implicit regularizer (see section 9.2).

Choosing hyperparameters

In the previous section, we discussed how test performance changes with model capac-
ity. Unfortunately, in the classical regime, we don’t have access to either the bias (which
requires knowledge of the true underlying function) or the variance (which requires mul-
tiple independently sampled datasets to estimate). In the modern regime, there is no
way to tell how much capacity should be added before the test error stops improving.
This raises the question of exactly how we should choose model capacity in practice.

For a deep network, the model capacity depends on the numbers of hidden layers
and hidden units per layer as well as other aspects of architecture that we have yet to
introduce. Furthermore, the choice of learning algorithm and any associated parameters
(learning rate, etc.) also affects the test performance. These elements are collectively
termed hyperparameters. The process of finding the best hyperparameters is termed
hyperparameter search or (when focused on network structure) neural architecture search.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8.6

8.6 Summary 133

Hyperparameters are typically chosen empirically; we train many models with differ-
ent hyperparameters on the same training set, measure their performance, and retain the
best model. However, we do not measure their performance on the test set; this would
admit the possibility that these hyperparameters just happen to work well for the test
set but don’t generalize to further data. Instead, we introduce a third dataset known
as a validation set. For every choice of hyperparameters, we train the associated model
using the training set and evaluate performance on the validation set. Finally, we select
the model that worked best on the validation set and measure its performance on the
test set. In principle, this should give a reasonable estimate of the true performance.

The hyperparameter space is generally smaller than the parameter space but still
too large to try every combination exhaustively. Unfortunately, many hyperparameters
are discrete (e.g., the number of hidden layers), and others may be conditional on one
another (e.g., we only need to specify the number of hidden units in the tenth hidden
layer if there are ten or more layers). Hence, we cannot rely on gradient descent methods
as we did for learning the model parameters. Hyperparameter optimization algorithms
intelligently sample the space of hyperparameters, contingent on previous results. This
procedure is computationally expensive since we must train an entire model and measure
the validation performance for each combination of hyperparameters.

Summary

To measure performance, we use a separate test set. The degree to which performance is
maintained on this test set is known as generalization. Test errors can be explained by
three factors: noise, bias, and variance. These combine additively in regression problems
with least squares losses. Adding training data decreases the variance. When the model
capacity is less than the number of training examples, increasing the capacity decreases
bias but increases variance. This is known as the bias-variance trade-off, and there is a
capacity where the trade-off is optimal.

However, this is balanced against a tendency for performance to improve with ca-
pacity, even when the parameters exceed the training examples. Together, these two
phenomena create the double descent curve. It is thought that the model interpolates
more smoothly between the training data points in the over-parameterized “modern
regime,” although it is unclear what drives this. To choose the capacity and other model
and training algorithm hyperparameters, we fit multiple models and evaluate their per-
formance using a separate validation set.

Notes

Bias-variance trade-off: We showed that the test error for regression problems with least
squares loss decomposes into the sum of noise, bias, and variance terms. These factors are
all present for models with other losses, but their interaction is typically more complicated
(Friedman, 1997; Domingos, 2000). For classification problems, there are some counter-intuitive

Draft: please send errata to udlbookmail@gmail.com.

134 8 Measuring performance

predictions; for example, if the model is biased toward selecting the wrong class in a region of
the input space, then increasing the variance can improve the classification rate as this pushes
some of the predictions over the threshold to be classified correctly.

Cross-validation: We saw that it is typical to divide the data into three parts: training
data (which is used to learn the model parameters), validation data (which is used to choose
the hyperparameters), and test data (which is used to estimate the final performance). This
approach is known as cross-validation. However, this division may cause problems where the
total number of data examples is limited; if the number of training examples is comparable to
the model capacity, then the variance will be large.

One way to mitigate this problem is to use k-fold cross-validation. The training and validation
data are partitioned into K disjoint subsets. For example, we might divide these data into
five parts. We train with four and validate with the fifth for each of the five permutations
and choose the hyperparameters based on the average validation performance. The final test
performance is assessed using the average of the predictions from the five models with the best
hyperparameters on an entirely different test set. There are many variations of this idea, but
all share the general goal of using a larger proportion of the data to train the model, thereby
reducing variance.

Capacity: We have used the term capacity informally to mean the number of parameters or
hidden units in the model (and hence indirectly, the ability of the model to fit functions of
increasing complexity). The representational capacity of a model describes the space of possible
functions it can construct when we consider all possible parameter values. When we take into
account the fact that an optimization algorithm may not be able to reach all of these solutions,
what is left is the effective capacity.

The Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971) is a more formal
measure of capacity. It is the largest number of training examples that a binary classifier can
label arbitrarily. Bartlett et al. (2019) derive upper and lower bounds for the VC dimension in
terms of the number of layers and weights. An alternative measure of capacity is the Rademacher
complexity, which is the expected empirical performance of a classification model (with optimal
parameters) for data with random labels. Neyshabur et al. (2017) derive a lower bound on the
generalization error in terms of the Rademacher complexity.

Double descent: The term “double descent” was coined by Belkin et al. (2019), who demon-
strated that the test error decreases again in the over-parameterized regime for two-layer neural
networks and random features. They also claimed that this occurs in decision trees, although
Buschjager & Morik (2021) subsequently provided evidence to the contrary. Nakkiran et al.
(2021) show that double descent occurs for various modern datasets (CIFAR-10, CIFAR-100,
IWSLT’14 de-en), architectures (CNNs, ResNets, transformers), and optimizers (SGD, Adam).
The phenomenon is more pronounced when noise is added to the target labels (Nakkiran et al.,
2021) and when some regularization techniques are used (Ishida et al., 2020).

Nakkiran et al. (2021) also provide empirical evidence that test performance depends on effective
model capacity (the largest number of samples for which a given model and training method can
achieve zero training error). At this point, the model starts to devote its efforts to interpolating
smoothly. As such, the test performance depends not just on the model but also on the training
algorithm and length of training. They observe the same pattern when they study a model with
fixed capacity and increase the number of training iterations. They term this epoch-wise double
descent. This phenomenon has been modeled by Pezeshki et al. (2022) in terms of different
features in the model being learned at different speeds.

Double descent makes the rather strange prediction that adding training data can sometimes
worsen test performance. Consider an over-parameterized model in the second descending part

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 135

of the curve. If we increase the training data to match the model capacity, we will now be in
the critical region of the new test error curve, and the test loss may increase.

Bubeck & Sellke (2021) prove that overparameterization is necessary to interpolate data smoothly
in high dimensions. They demonstrate a trade-off between the number of parameters and the
Lipschitz constant of a model (the fastest the output can change for a small input change). A
review of the theory of over-parameterized machine learning can be found in Dar et al. (2021).

Appendix B.1.1
Lipschitz constant

Curse of dimensionality: As dimensionality increases, the volume of space grows so fast that
the amount of data needed to densely sample it increases exponentially. This phenomenon is
known as the curse of dimensionality. High-dimensional space has many unexpected properties,
and caution should be used when trying to reason about it based on low-dimensional exam-
ples. This book visualizes many aspects of deep learning in one or two dimensions, but these
visualizations should be treated with healthy skepticism.

Surprising properties of high-dimensional spaces include: (i) Two randomly sampled data points
from a standard normal distribution are very close to orthogonal to one another (relative to
the origin) with high likelihood. (ii) The distance from the origin of samples from a standard
normal distribution is roughly constant. (iii) Most of a volume of a high-dimensional sphere
(hypersphere) is adjacent to its surface (a common metaphor is that most of the volume of a high-
dimensional orange is in the peel, not in the pulp). (iv) If we place a unit-diameter hypersphere
inside a hypercube with unit-length sides, then the hypersphere takes up a decreasing proportion
of the volume of the cube as the dimension increases. Since the volume of the cube is fixed at
size one, this implies that the volume of a high-dimensional hypersphere becomes close to zero.
(v) For random points drawn from a uniform distribution in a high-dimensional hypercube, the
ratio of the Euclidean distance between the nearest and furthest points becomes close to one.
For further information, consult Beyer et al. (1999) and Aggarwal et al. (2001).

Problems 8.6-8.9

Notebook 8.4
High-dimensional
spaces

Real-world performance: In this chapter, we argued that model performance could be evalu-
ated using a held-out test set. However, the result won’t be indicative of real-world performance
if the statistics of the test set don’t match those of real-world data. Moreover, the statistics
of real-world data may change over time, causing the model to become increasingly stale and
performance to decrease. This is known as data drift and means that deployed models must be
carefully monitored.

There are three main reasons why real-world performance may be worse than the test perfor-
mance implies. First, the statistics of the input data x may change; we may now be observing
parts of the function that were sparsely sampled or not sampled at all during training. This
is known as covariate shift. Second, the statistics of the output data y may change; if some
output values are infrequent during training, then the model may learn not to predict these in
ambiguous situations and will make mistakes if they are more common in the real world. This
is known as prior shift. Third, the relationship between input and output may change. This is
known as concept shift. These issues are discussed in Moreno-Torres et al. (2012).

Hyperparameter search: Finding the best hyperparameters is a challenging optimization
task. Testing a single configuration of hyperparameters is expensive; we must train an entire
model and measure its performance. We have no easy way to access the derivatives (i.e., how
performance changes when we make a small change to a hyperparameter). Moreover, many of
the hyperparameters are discrete, so we cannot use gradient descent methods. There are multiple
local minima and no way to tell if we are close to the global minimum. The noise level is high
since each training/validation cycle uses a stochastic training algorithm; we expect different
results if we train a model twice with the same hyperparameters. Finally, some variables are
conditional and only exist if others are set. For example, the number of hidden units in the
third hidden layer is only relevant if we have at least three hidden layers.

Draft: please send errata to udlbookmail@gmail.com.

136 8 Measuring performance

A simple approach is to sample the space randomly (Bergstra & Bengio, 2012). However,
for continuous variables, it is better to build a model of performance as a function of the
hyperparameters and the uncertainty in this function. This can be exploited to test where the
uncertainty is great (explore the space) or home in on regions where performance looks promising
(exploit previous knowledge). Bayesian optimization is a framework based on Gaussian processes
that does just this, and its application to hyperparameter search is described in Snoek et al.
(2012). The Beta-Bernoulli bandit (see Lattimore & Szepesvéri, 2020) is a roughly equivalent
model for describing uncertainty in results due to discrete variables.

The sequential model-based configuration (SMAC) algorithm (Hutter et al., 2011) can cope with
continuous, discrete, and conditional parameters. The basic approach is to use a random forest
to model the objective function where the mean of the tree predictions is the best guess about
the objective function, and their variance represents the uncertainty. A completely different
approach that can also cope with combinations of continuous, discrete, and conditional param-
eters is Tree-Parzen Estimators (Bergstra et al., 2011). The previous methods modeled the
probability of the model performance given the hyperparameters. In contrast, the Tree-Parzen
estimator models the probability of the hyperparameters given the model performance.

Hyperband (Li et al., 2017b) is a multi-armed bandit strategy for hyperparameter optimization.
It assumes that there are computationally cheap but approximate ways to measure performance
(e.g., by not training to completion) and that these can be associated with a budget (e.g., by
training for a fixed number of iterations). A number of random configurations are sampled and
run until the budget is used up. Then the best fraction n of runs is kept, and the budget is
multiplied by 1/7. This is repeated until the maximum budget is reached. This approach has
the advantage of efficiency; for bad configurations, it does not need to run the experiment to the
end. However, each sample is just chosen randomly, which is inefficient. The BOHB algorithm
(Falkner et al., 2018) combines the efficiency of Hyperband with the more sensible choice of
hyperparameters from Tree Parzen estimators to construct an even better method.

Problems

Problem 8.1 Will the multiclass cross-entropy training loss in figure 8.2 ever reach zero? Explain
your reasoning.

Problem 8.2 What values should we choose for the three weights and biases in the first layer of
the model in figure 8.4a so that the hidden unit’s responses are as depicted in figures 8.4b—d?

Problem 8.3" Given a training dataset consisting of I input/output pairs {z;, y;}, show how
the parameters {3, w1, w2, ws} for the model in figure 8.4a using the least squares loss function
can be found in closed form.

Problem 8.4 Consider the curve in figure 8.10b at the point where we train a model with a
hidden layer of size 200, which would have 50,410 parameters. What do you predict will happen
to the training and test performance if we increase the number of training examples from 10,000
to 50,4107

Problem 8.5 Consider the case where the model capacity exceeds the number of training data
points, and the model is flexible enough to reduce the training loss to zero. What are the
implications of this for fitting a heteroscedastic model? Propose a method to resolve any
problems that you identify.

Problem 8.6 Show that two random points drawn from a 1000-dimensional standard Gaussian
distribution are orthogonal relative to the origin with high probability.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 137

a) Pr(zy,z) b) c)
D=25 D=100 D =500
. z
o € =
g B/ 3 'r%
L @) _8
x
1 12 3 4 0 ' o R
Distance Distance

Figure 8.13 Typical sets. a) Standard normal distribution in two dimensions.
Circles are four samples from this distribution. As the distance from the cen-
ter increases, the probability decreases, but the volume of space at that radius
(i.e., the area between adjacent evenly spaced circles) increases. b) These fac-
tors trade off so that the histogram of distances of samples from the center has
a pronounced peak. c) In higher dimensions, this effect becomes more extreme,
and the probability of observing a sample close to the mean becomes vanishingly
small. Although the most likely point is at the mean of the distribution, the
typical samples are found in a relatively narrow shell.

Problem 8.7 The volume of a hypersphere with radius r in D dimensions is:

D_D/2
rom
Vol[r] = ———-——,
"= o
where I'[e] is the Gamma function. Show using Stirling’s formula that the volume of a hyper-
sphere of diameter one (radius 7=0.5) becomes zero as the dimension increases.

(8.8)

Problem 8.8 Consider a hypersphere of radius r = 1. Find an expression for the proportion
of the total volume that lies in the outermost 1% of the distance from the center (i.e., in the
outermost shell of thickness 0.01). Show that this becomes one as the dimension increases.

Problem 8.9 Figure 8.13c shows the distribution of distances of samples of a standard normal
distribution as the dimension increases. Empirically verify this finding by sampling from the
standard normal distributions in 25, 100, and 500 dimensions and plotting a histogram of the
distances from the center. What closed-form probability distribution describes these distances?

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.1.3
Gamma function

Appendix B.1.4
Stirling’s formula

9.1

Chapter 9

Regularization

Chapter 8 described how to measure model performance and identified that there could
be a significant performance gap between the training and test data. Possible reasons for
this discrepancy include: (i) the model describes statistical peculiarities of the training
data that are not representative of the true mapping from input to output (overfitting),
and (ii) the model is unconstrained in areas with no training examples, leading to sub-
optimal predictions.

This chapter discusses regularization techniques. These are a family of methods that
reduce the generalization gap between training and test performance. Strictly speaking,
regularization involves adding explicit terms to the loss function that favor certain pa-
rameter choices. However, in machine learning, this term is commonly used to refer to
any strategy that improves generalization.

We start by considering regularization in its strictest sense. Then we show how
the stochastic gradient descent algorithm itself favors certain solutions. This is known
as implicit regularization. Following this, we consider a set of heuristic methods that
improve test performance. These include early stopping, ensembling, dropout, label
smoothing, and transfer learning.

Explicit regularization

Consider fitting a model {[x, ¢] with parameters ¢ using a training set {x;,y;} of in-
put/output pairs. We seek the minimum of the loss function L[¢] :

¢ = argmin[L[¢]]

[}
I
= arggﬂn [Z gi [Xi,yi}‘| 5 (91)
i=1

where the individual terms ¢;[x;,y;] measure the mismatch between the network pre-
dictions f[x;, ¢] and output targets y; for each training pair. To bias this minimization

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.1.1

9.1 Explicit regularization 139

232)5 Loss b) Regularization C) Loss + regularization
(o]
o
o o ©
o
—
N]}
o
© o)
) (o) A
25 —Q . .
410 0 10-10 0 10-10 0 1
bo bo bo

Figure 9.1 Explicit regularization. a) Loss function for Gabor model (see sec-
tion 6.1.2). Cyan circles represent local minima. Gray circle represents the global
minimum. b) The regularization term favors parameters close to the center of the
plot by adding an increasing penalty as we move away from this point. ¢) The
final loss function is the sum of the original loss function plus the regularization
term. This surface has fewer local minima, and the global minimum has moved
to a different position (arrow shows change).

toward certain solutions, we include an additional term:

I

&zarg;nm > bilxiyil +A- (el (9.2)
1=1

where g[@] is a function that returns a scalar that takes a larger value when the pa-
rameters are less preferred. The term) is a positive scalar that controls the relative
contribution of the original loss function and the regularization term. The minima of
the regularized loss function usually differ from those in the original, so the training
procedure converges to different parameter values (figure 9.1).

Probabilistic interpretation

Regularization can be viewed from a probabilistic perspective. Section 5.1 shows how
loss functions are constructed from the maximum likelihood criterion:

¢ = argmax

I
[IPrvilxi, ¢>] : (9:3)

i=1

The regularization term can be considered as a prior Pr(¢) that represents knowledge
about the parameters before we observe the data:

Draft: please send errata to udlbookmail@gmail.com.

9.1.2

Problems 9.1-9.2

Notebook 9.1

L2 regularization

140 9 Regularization

I
= argglax H Pr(yi|xi,®)Pr(¢)| . (9.4)

i=1

Moving back to the negative log-likelihood loss function by taking the log and multiplying
by minus one, we see that \ - g[¢p] = — log[Pr(¢)].

L2 regularization

This discussion has sidestepped the question of which solutions the regularization term
should penalize (or equivalently that the prior should favor). Since neural networks are
used in an extremely broad range of applications, these can only be very generic pref-
erences. The most commonly used regularization term is the L2 norm, which penalizes
the sum of the squares of the parameter values:

I
¢ = argmin Z&[Xi, vil + A Z o7, (9.5)
¢ i=1 J

where j indexes the parameters. This is also referred to as Tikhonov regularization or
ridge regression, or (when applied to matrices) Frobenius norm reqularization.

For neural networks, L2 regularization is usually applied to the weights but not
the biases and is hence referred to as a weight decay term. The effect is to encourage
smaller weights, so the output function is smoother. To see this, consider that the
output prediction is a weighted sum of the activations at the last hidden layer. If the
weights have a smaller magnitude, the output will vary less. The same logic applies to
the computation of the pre-activations at the last hidden layer and so on, progressing
backward through the network. In the limit, if we forced all the weights to be zero, the
network would produce a constant output determined by the final bias parameter.

Figure 9.2 shows the effect of fitting the simplified network from figure 8.4 with weight
decay and different values of the regularization coefficient \. When A is small, it has
little effect. However, as A increases, the fit to the data becomes less accurate, and the
function becomes smoother. This might improve the test performance for two reasons:

o If the network is overfitting, then adding the regularization term means that the
network must trade off slavish adherence to the data against the desire to be
smooth. One way to think about this is that the error due to variance reduces (the
model no longer needs to pass through every data point) at the cost of increased
bias (the model can only describe smooth functions).

¢ When the network is over-parameterized, some of the extra model capacity de-
scribes areas with no training data. Here, the regularization term will favor func-
tions that smoothly interpolate between the nearby points. This is reasonable
behavior in the absence of knowledge about the true function.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.2

9.2.1

9.2 Implicit regularization 141

a) A=0 b) A = 0.00001 c) A = 0.0001

o® ° o® ° o %
’1'000 0.5 1.0 0.0 05 1.00.0 05 1.0
d) A = 0.001 e) A =0.01 f) A=0.1
>
é_o.o- o ¢ ° / e ° ° WA 2 °
5 o °
3 y) N
~° — e
o® { o® ° ® %
4'00.0 05 1.0 0.0 05 1.00.0 05 1.0
Input, = Input, = Input, =

Figure 9.2 L2 regularization in simplified network (see figure 8.4). a-f) Fitted
functions as we increase the regularization coefficient A. The black curve is the
true function, the orange circles are the noisy training data, and the cyan curve
is the fitted model. For small A (panels a-b), the fitted function passes exactly
through the data points. For intermediate A (panels c—d), the function is smoother
and more similar to the ground truth. For large A (panels e—f), the fitted function
is smoother than the ground truth, so the fit is worse.

Implicit regularization

An intriguing recent finding is that neither gradient descent nor stochastic gradient
descent moves neutrally to the minimum of the loss function; each exhibits a preference
for some solutions over others. This is known as implicit regularization.

Implicit regularization in gradient descent

Consider a continuous version of gradient descent where the step size is infinitesimal.
The change in parameters ¢ will be governed by the differential equation:

o OL
%% =59 (9.6)

Gradient descent approximates this process with a series of discrete steps of size «:

Draft: please send errata to udlbookmail@gmail.com.

9 Regularization

b)

Regularization

)

Loss + regularization

&

¥
1
1
1
I
1
1
1
1
!

0.0
oo

1.0-1.0

0.0
oo

00
oo

Figure 9.3 Implicit regularization in gradient descent. a) Loss function with family

of global minima on horizontal line ¢1 = 0.61. Dashed blue line shows continuous
Cyan trajectory shows discrete

gradient descent path starting in bottom-left.

gradient descent with step size 0.1 (first few steps shown explicitly as arrows).
The finite step size causes the paths to diverge and reach a different final position.
b) This disparity can be approximated by adding a regularization term to the
continuous gradient descent loss function that penalizes the squared gradient

magnitude.

c) After adding this term, the continuous gradient descent path

converges to the same place that the discrete one did on the original function.

OL[¢,]

¢t+1 =¢,—«

p

(9.7)

The discretization causes a deviation from the continuous path (figure 9.3).

This deviation can be understood by deriving a modified loss term L for the contin-
uous case that arrives at the same place as the discretized version on the original loss L.

It can be shown (see end of chapter) that this modified loss is:

Leple] = Lig] +

o
4

oL
9¢

(9.8)

In other words, the discrete trajectory is repelled from places where the gradient norm
is large (the surface is steep). This doesn’t change the position of the minima where the
gradients are zero anyway. However, it changes the effective loss function elsewhere and
modifies the optimization trajectory, which potentially converges to a different minimum.
Implicit regularization due to gradient descent may be responsible for the observation
that full batch gradient descent generalizes better with larger step sizes (figure 9.5a).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.2 Implicit regularization

143

2) Loss, L[¢] b) GD modification
o
Y
255 B 10-10 0 !
) ¢0 d) ¢0 ~
;5 SGD modification Modified loss, Lsap[¢]
°
)
25+ D 10-10 0 !
®o ®o

Figure 9.4 Implicit regularization for stochastic gradient descent. a) Original
loss function for Gabor model (section 6.1.2). b) Implicit regularization term
from gradient descent penalizes the squared gradient magnitude. ¢) Additional
implicit regularization from stochastic gradient descent penalizes the variance of

the batch gradients.
implicit regularization components).

d) Modified loss function (sum of original loss plus two

Draft: please send errata to udlbookmail@gmail.com.

9.2.2

Notebook 9.2
Implicit
regularization

9.3

144 9 Regularization

Implicit regularization in stochastic gradient descent
A similar analysis can be applied to stochastic gradient descent. Now we seek a modified

loss function such that the continuous version reaches the same place as the average of
the possible random SGD updates. This can be shown to be:

2

. . Z oL, oL
Lionldl = Lanlel+ 153 |5t -
SGD GD 432 o6 0
a||0L|* o |[oL, oL|?
= Ligl+ 7 +4Bb§_:l‘a¢—a¢ : (9.9)

Here, Ly is the loss for the b*" of the B batches in an epoch, and both L and L, now
represent the means of the I individual losses in the full dataset and the |B| individual
losses in the batch, respectively:

I

L 1
= ieB,

Equation 9.9 reveals an extra regularization term, which corresponds to the variance
of the gradients of the batch losses L. In other words, SGD implicitly favors places
where the gradients are stable (where all the batches agree on the slope). Once more, this
modifies the trajectory of the optimization process (figure 9.4) but does not necessarily
change the position of the global minimum; if the model is over-parameterized, then it
may fit all the training data exactly, so all of these gradient terms will all be zero at the
global minimum.

SGD generalizes better than gradient descent, and smaller batch sizes generally per-
form better than larger ones (figure 9.5b). One possible explanation is that the inherent
randomness allows the algorithm to reach different parts of the loss function. However,
it’s also possible that some or all of this performance increase is due to implicit regular-
ization; this encourages solutions where all the data fits well (so the batch variance is
small) rather than solutions where some of the data fit extremely well and other data less
well (perhaps with the same overall loss, but with larger batch variance). The former
solutions are likely to generalize better.

Heuristics to improve performance

We've seen that adding explicit regularization terms encourages the training algorithm
to find a good solution by adding extra terms to the loss function. This also occurs
implicitly as an unintended (but seemingly helpful) byproduct of stochastic gradient
descent. This section describes other heuristic methods used to improve generalization.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.3.1

9.3.2

9.3 Heuristics to improve performance 145

a) 0 MNISTID no label noise b) 70 MNISTID no label noise
I === Full batch, LR = 0.5 m === Batch size 10, LR = 0.1
— Full batch, LR = 0.1 — Batch Size 100, LR = 0.1
601 Full batch, LR = 0.05 601 Full batch (4000), LR = 0.1
50 501 'i\
& a0 i w
= L SRR, — ‘
2 30, Test| £ 30 \
w w ‘ Test,
201 20{
)
||
104 10 'v:w
0 / . Train 0 _‘ Train
100 200 300 400 100 200 300 400
Hidden layer size Hidden layer size

Figure 9.5 Effect of learning rate and batch size for 4000 training and 4000 test
examples from MNIST-1D (see figure 8.1) for a neural network with two hidden
layers. a) Performance is better for large learning rates than for intermediate or
small ones. In each case, the number of iterations is 6000x the learning rate, so
each solution has the opportunity to move the same distance. b) Performance is
superior for smaller batch sizes. In each case, the number of iterations was chosen
so that the training data were memorized at roughly the same model capacity.

Early stopping

Early stopping refers to stopping the training procedure before it has fully converged.
This can reduce overfitting if the model has already captured the coarse shape of the
underlying function but has not yet had time to overfit to the noise (figure 9.6). One
way of thinking about this is that since the weights are initialized to small values (see
section 7.5), they simply don’t have time to become large, so early stopping has a similar
effect to explicit L2 regularization. A different view is that early stopping reduces the
effective model complexity. Hence, we move back down the bias/variance trade-off curve
from the critical region, and performance improves (see figures 8.9 and 8.10).

Early stopping has a single hyperparameter, the number of steps after which learning
is terminated. As usual, this is chosen empirically using a validation set (section 8.5).
However, for early stopping, the hyperparameter can be selected without the need to
train multiple models. The model is trained once, the performance on the validation set
is monitored every T iterations, and the associated models are stored. The stored model
where the validation performance was best is selected.

Ensembling

Another approach to reducing the generalization gap between training and test data is
to build several models and average their predictions. A group of such models is known

Draft: please send errata to udlbookmail@gmail.com.

Notebook 9.3
Ensembling

146 9 Regularization

a) | b) c)
' lter = 0] Iter = 1000 lter = 5000
Loss = 32.24] Loss = 1.64 Loss = 1.10
°“\. 1 /% N,
W
. N .
~— —
o® 99 o %
aot
0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0
d), °) f)
' lter = 10000 lter = 50000 lter = 200000
Loss = 0.80 Loss = 0.36 Loss = 0.16
>
= [
200{ /° \
)
3 Y
. ©®
o %
-1.0 - - -
0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0

Input, Input, Input, x

Figure 9.6 Early stopping. a) Simplified shallow network model with 14 linear
regions (figure 8.4) is initialized randomly (cyan curve) and trained with SGD
using a batch size of five and a learning rate of 0.05. b-d) As training proceeds,
the function first captures the coarse structure of the true function (black curve)
before e—f) overfitting to the noisy training data (orange points). Although the
training loss continues to decrease throughout this process, the learned models in
panels (c) and (d) are closest to the true underlying function. They will generalize
better on average to test data than those in panels (e) or (f).

as an ensemble. This technique reliably improves test performance at the cost of training
and storing multiple models and performing inference multiple times.

The models can be combined by taking the mean of the outputs (for regression
problems) or the mean of the pre-softmax activations (for classification problems). The
assumption is that model errors are independent and will cancel out. Alternatively,
we can take the median of the outputs (for regression problems) or the most frequent
predicted class (for classification problems) to make the predictions more robust.

One way to train different models is just to use different random initializations. This
may help in regions of input space far from the training data. Here, the fitted function
is relatively unconstrained, and different models may produce different predictions, so
the average of several models may generalize better than any single model.

A second approach is to generate several different datasets by re-sampling the train-
ing data with replacement and training a different model from each. This is known as
bootstrap aggregating or bagging for short (figure 9.7). It has the effect of smoothing
out the data; if a data point is not present in one training set, the model will interpo-

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.3.3

9.3 Heuristics to improve performance 147

a)4) Original b) Model 1 c) Model 2
4 o 4 ,
> @
2 | 7N | [T
B‘ f [] Py ®
=]]
3 4 vea "
-1.0 e — e — - T
0.0 05 1.0 0.0 05 1.00.0 05 1.0
d), Model 3 e) Model 4 f) Ensemble
DD D
R /. | [\. | % ..\
s o] . N O\ 2
g "4 ® e "\ ®)
% 05 10 0.0 05 1.0 0.0 05 1.0
Input, Input, Input,

Figure 9.7 Ensemble methods. a) Fitting a single model (gray curve) to the
entire dataset (orange points). b—e) Four models created by re-sampling the data
with replacement (bagging) four times (size of orange point indicates number of
times the data point was re-sampled). f) When we average the predictions of this
ensemble, the result (cyan curve) is smoother than the result from panel (a) for
the full dataset (gray curve) and will probably generalize better.

late from nearby points; hence, if that point was an outlier, the fitted function will be
more moderate in this region. Other approaches include training models with different
hyperparameters or training completely different families of models.

Dropout

Dropout randomly clamps a subset (typically 50%) of hidden units to zero at each iter-
ation of SGD (figure 9.8). This makes the network less dependent on any given hidden
unit and encourages the weights to have smaller magnitudes so that the change in the
function due to the presence or absence of the hidden unit is reduced.

This technique has the positive benefit that it can eliminate undesirable “kinks” in
the function that are far from the training data and don’t affect the loss. For example,
consider three hidden units that become active sequentially as we move along the curve
(figure 9.9a). The first hidden unit causes a large increase in the slope. A second hidden

Draft: please send errata to udlbookmail@gmail.com.

148 9 Regularization

Figure 9.8 Dropout. a) Original network. b-d) At each training iteration, a
random subset of hidden units is clamped to zero (gray nodes). The result is
that the incoming and outgoing weights from these units have no effect, so we are
training with a slightly different network each time.

unit decreases the slope, so the function goes back down. Finally, the third unit cancels
out this decrease and returns the curve to its original trajectory. These three units
conspire to make an undesirable local change in the function. This will not change the
training loss but is unlikely to generalize well.

When several units conspire in this way, eliminating one (as would happen in dropout)
causes a considerable change to the output function that is propagated to the half-space
where that unit was active (figure 9.9b). A subsequent gradient descent step will attempt
to compensate for the change that this induces, and such dependencies will be eliminated
over time. The overall effect is that large unnecessary changes between training data
points are gradually removed even though they contribute nothing to the loss (figure 9.9).

At test time, we can run the network as usual with all the hidden units active;
however, the network now has more hidden units than it was trained with at any given
iteration, so we multiply the weights by one minus the dropout probability to compensate.
This is known as the weight scaling inference rule. A different approach to inference is
to use Monte Carlo dropout, in which we run the network multiple times with different
random subsets of units clamped to zero (as in training) and combine the results. This
is closely related to ensembling in that every random version of the network is a different
model; however, we do not have to train or store multiple networks here.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.3 Heuristics to improve performance 149

a) . Original b) Turn off hidden unit 8 C) 2000 iters dropout (7/8/9)
SN
s | R S N
s 4 b° A p
+J
03 » =~ » » 2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, Input, x Input,

Figure 9.9 Dropout mechanism. a) An undesirable kink in the curve is caused
by a sequential increase in the slope, decrease in the slope (at circled joint), and
then another increase to return the curve to its original trajectory. Here we are
using full-batch gradient descent, and the model already fits the data as well as
possible, so further training won’t remove the kink. b) Consider what happens if
we remove the hidden unit that produced the circled joint in panel (a), as might
happen using dropout. Without the decrease in the slope, the right-hand side
of the function takes an upwards trajectory, and a subsequent gradient descent
step will aim to compensate for this change. ¢) Curve after 2000 iterations of
(i) randomly removing one of the three hidden units that cause the kink and
(ii) performing a gradient descent step. The kink does not affect the loss but is
nonetheless removed by this approximation of the dropout mechanism.

9.3.4 Applying noise

Dropout can be interpreted as applying multiplicative Bernoulli noise to the network
activations. This leads to the idea of applying noise to other parts of the network during
training to make the final model more robust.

One option is to add noise to the input data; this smooths out the learned function
(figure 9.10). For regression problems, it can be shown to be equivalent to adding a
regularizing term that penalizes the derivatives of the network’s output with respect to
its input. An extreme variant is adversarial training, in which the optimization algorithm
actively searches for small perturbations of the input that cause large changes to the
output. These can be thought of as worst-case additive noise vectors.

A second possibility is to add noise to the weights. This encourages the network to
make sensible predictions even for small perturbations of the weights. The result is that
the training converges to local minima in the middle of wide, flat regions, where changing
the individual weights does not matter much.

Finally, we can perturb the labels. The maximum-likelihood criterion for multiclass
classification aims to predict the correct class with absolute certainty (equation 5.24).
To this end, the final network activations (i.e., before the softmax function) are pushed
to very large values for the correct class and very small values for the wrong classes.

We could discourage this overconfident behavior by assuming that a proportion p of

Draft: please send errata to udlbookmail@gmail.com.

Problem 9.3

Problem 9.4

9.3.5

Appendix C.1.4
Bayes’ rule

150 9 Regularization
a),, b)
o, =0.0 o, = 0.60
i ..
> 7
S/ N\
a \o o 9. @8
=
o o SN— N g
1 ° ° °
0.0 05 10 00 05 10 0.0 05 10
Input, Input, Input,

Figure 9.10 Adding noise to inputs. At each step of SGD, random noise with
variance o2 is added to the batch data. a-—c) Fitted model with different noise
levels (small dots represent ten samples). Adding more noise smooths out the
fitted function (cyan line).

the training labels are incorrect and belong with equal probability to the other classes.
This could be done by randomly changing the labels at each training iteration. However,
the same end can be achieved by changing the loss function to minimize the cross-
entropy between the predicted distribution and a distribution where the true label has
probability 1 — p, and the other classes have equal probability. This is known as label
smoothing and improves generalization in diverse scenarios.

Bayesian inference

The maximum likelihood approach is generally overconfident; in the training phase, it
selects the most likely parameters and bases its predictions on the model defined by these.
However, many parameter values may be broadly compatible with the data and only
slightly less likely. The Bayesian approach treats the parameters as unknown variables
and computes a distribution Pr(¢|{x;,y;}) over these parameters ¢ conditioned on the
training data {x;,y;} using Bayes’ rule:

[T, Priyilxi.) Pr(¢)
J iz Priyilxi,) Pr(¢)de
where Pr(¢) is the prior probability of the parameters, and the denominator is a nor-
malizing term. Hence, every parameter choice is assigned a probability (figure 9.11).

The prediction y for new input x is an infinite weighted sum (i.e., an integral) of the
predictions for each parameter set, where the weights are the associated probabilities:

(9.11)

Pr(¢l{xi,yi}) =

Pr(ylx, {xi,¥:}) = / Pr(ylx, ¢)Pr(¢|{xi, y:})deb. (9.12)

This is effectively an infinite weighted ensemble, where the weight depends on (i) the
prior probability of the parameters and (ii) their agreement with the data.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.3.6

9.3 Heuristics to improve performance 151

a) 03 =1000.0 b) o3 =100.0 c) 03 =10.0

:o_."‘o// o ‘.)‘

s Vg
-1.0 R — e ——— e ———
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
d) , e) f)

00 05 1000 05 1000 05 10
Input, = Input, = Input, =

Figure 9.11 Bayesian approach for simplified network model (see figure 8.4). The
parameters are treated as uncertain. The posterior probability Pr(¢|{x;,y:}) for
a set of parameters is determined by their compatibility with the data {x;,y:}
and a prior distribution Pr(¢). a—c) Two sets of parameters (cyan curves) sam-
pled from the posterior using normally distributed priors with mean zero and
three variances. When the prior variance is small, the parameters also tend to be
small, and the functions smoother. d—f) Inference proceeds by taking a weighted
sum over all possible parameter values where the weights are the posterior prob-
abilities. This produces both a prediction of the mean (cyan curves) and the
associated uncertainty (gray region is two standard deviations).

The Bayesian approach is elegant and can provide more robust predictions than
those that derive from maximum likelihood. Unfortunately, for complex models like
neural networks, there is no practical way to represent the full probability distribution
over the parameters or to integrate over it during the inference phase. Consequently, all
current methods of this type make approximations of some kind, and typically these add
considerable complexity to learning and inference.

Transfer learning and multi-task learning

When training data are limited, other datasets can be exploited to improve performance.
In transfer learning (figure 9.12a), the network is pre-trained to perform a related sec-

Draft: please send errata to udlbookmail@gmail.com.

Notebook 9.4
Bayesian
approach

9.3.7

9.3.8

Notebook 9.5
Augmentation

152 9 Regularization

ondary task for which data are more plentiful. The resulting model is then adapted to
the original task. This is typically done by removing the last layer and adding one or
more layers that produce a suitable output. The main model may be fixed, and the new
layers trained for the original task, or we may fine-tune the entire model.

The principle is that the network will build a good internal representation of the
data from the secondary task, which can subsequently be exploited for the original task.
Equivalently, transfer learning can be viewed as initializing most of the parameters of
the final network in a sensible part of the space that is likely to produce a good solution.

Multi-task learning (figure 9.12b) is a related technique in which the network is trained
to solve several problems concurrently. For example, the network might take an image
and simultaneously learn to segment the scene, estimate the pixel-wise depth, and predict
a caption describing the image. All of these tasks require some understanding of the
image and, when learned simultaneously, the model performance for each may improve.

Self-supervised learning

The above discussion assumes that we have plentiful data for a secondary task or data for
multiple tasks to be learned concurrently. If not, we can create large amounts of “free”
labeled data using self-supervised learning and use this for transfer learning. There are
two families of methods for self-supervised learning: generative and contrastive.

In generative self-supervised learning, part of each data example is masked, and the
secondary task is to predict the missing part (figure 9.12¢). For example, we might use
a corpus of unlabeled images and a secondary task that aims to inpaint (fill in) missing
parts of the image (figure 9.12c). Similarly, we might use a large corpus of text and mask
some words. We train the network to predict the missing words and then fine-tune it for
the actual language task we are interested in (see chapter 12).

In contrastive self-supervised learning, pairs of examples with commonalities are com-
pared to unrelated pairs. For images, the secondary task might be to identify whether a
pair of images are transformed versions of one another or are unconnected. For text, the
secondary task might be to determine whether two sentences followed one another in the
original document. Sometimes, the precise relationship between a connected pair must
be identified (e.g., finding the relative position of two patches from the same image).

Augmentation

Transfer learning improves performance by exploiting a different dataset. Multi-task
learning improves performance using additional labels. A third option is to expand the
dataset. We can often transform each input data example in such a way that the label
stays the same. For example, we might aim to determine if there is a bird in an image
(figure 9.13). Here, we could rotate, flip, blur, or manipulate the color balance of the
image, and the label “bird” remains valid. Similarly, for tasks where the input is text,
we can substitute synonyms or translate to another language and back again. For tasks
where the input is audio, we can amplify or attenuate different frequency bands.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

9.3 Heuristics to improve performance

153

Model Segmentation
output layer

Depth
Model output layer

Segmentation

output layer [|
E— Model
Depth
output layer
c)
I:I Model Inpainting -
output layer

Figure 9.12 Transfer, multi-task, and self-supervised learning. a) Transfer learn-
ing is used when we have limited labeled data for the primary task (here depth
estimation) but plentiful data for a secondary task (here segmentation). We train
a model for the secondary task, remove the final layers, and replace them with
new layers appropriate to the primary task. We then train only the new layers
or fine-tune the entire network for the primary task. The network learns a good
internal representation from the secondary task that is then exploited for the pri-
mary task. b) In multi-task learning, we train a model to perform multiple tasks
simultaneously, hoping that performance on each will improve. ¢) In generative
self-supervised learning, we remove part of the data and train the network to
complete the missing information. Here, the task is to fill in (inpaint) a masked
portion of the image. This permits transfer learning when no labels are available.
Images from Cordts et al. (2016).

Draft: please send errata to udlbookmail@gmail.com.

9.4

154 9 Regularization

a) Original b) Flip C) Rotate and crop d) Vertical stretch

e) Color balance f) Blur g) Vignette h) Pincushion

Figure 9.13 Data augmentation. For some problems, each data example can be
transformed to augment the dataset. a) Original image. b—h) Various geometric
and photometric transformations of this image. For image classification, all these
images still have the same label, “bird.” Adapted from Wu et al. (2015a).

Generating extra training data in this way is known as data augmentation. The aim
is to teach the model to be indifferent to these irrelevant data transformations.

Summary

Explicit regularization involves adding an extra term to the loss function that changes
the position of the minimum. The term can be interpreted as a prior probability over
the parameters. Stochastic gradient descent with a finite step size does not neutrally
descend to the minimum of the loss function. This bias can be interpreted as adding
additional terms to the loss function, and this is known as implicit regularization.

There are also many heuristics for improving generalization, including early stopping,
dropout, ensembling, the Bayesian approach, adding noise, transfer learning, multi-task
learning, and data augmentation. There are four main principles behind these methods
(figure 9.14). We can (i) encourage the function to be smoother (e.g., L2 regularization),
(ii) increase the amount of data (e.g., data augmentation), (iii) combine models (e.g.,
ensembling), or (iv) search for wider minima (e.g., applying noise to network weights).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 155

Make function smoother

Increase data

Data

augmentation)
Multi-task

learning
Transfer
learning

Find wider minima

Combine multiple models

Figure 9.14 Regularization methods. The regularization methods discussed in this
chapter aim to improve generalization by one of four mechanisms. Some methods
aim to make the modeled function smoother. Other methods increase the effective
amount of data. The third group of methods combine multiple models and hence
mitigate against uncertainty in the fitting process. Finally, the fourth group of
methods encourages the training process to converge to a wide minimum where
small errors in the estimated parameters are less important (see also figure 20.11).

Another way to improve generalization is to choose the model architecture to suit the
task. For example, in image segmentation, we can share parameters within the model,
so we don’t need to independently learn what a tree looks like at every image location.
Chapters 10-13 consider architectural variations designed for different tasks.

Notes

An overview and taxonomy of regularization techniques in deep learning can be found in
Kukacka et al. (2017). Notably missing from the discussion in this chapter is BatchNorm
(Szegedy et al., 2016) at its variants, which are described in chapter 11.

Regularization: L2 regularization penalizes the sum of squares of the network weights. This
encourages the output function to change slowly (i.e., become smoother) and is the most used
regularization term. It is sometimes referred to as Frobenius norm regularization as it penalizes
the Frobenius norms of the weight matrices. It is often also mistakenly referred to as “weight
decay,” although this is a separate technique devised by Hanson & Pratt (1988) in which the
parameters ¢ are updated as:

0L

¢+ (1 —/\')qb—a%, (9.13)

Draft: please send errata to udlbookmail@gmail.com.

Problem 9.5

Appendix B.3.2
Vector norms

Problem 9.6

Appendix B.1.1
Lipschitz constant

Appendix B.3.2
Spectral norm

156 9 Regularization

where, as usual, « is the learning rate, and L is the loss. This is identical to gradient descent,
except that the weights are reduced by a factor of 1—\" before the gradient update. For standard
SGD, weight decay is equivalent to L2 regularization (equation 9.5) with coefficient A = X' /2.
However, for Adam, the learning rate « is different for each parameter, so L2 regularization
and weight decay differ. Loshchilov & Hutter (2019) present AdamW, which modifies Adam to
implement weight decay correctly and show that this improves performance.

Other choices of vector norm encourage sparsity in the weights. The L0 regularization term
applies a fixed penalty for every non-zero weight. The effect is to “prune” the network. LO
regularization can also be used to encourage group sparsity; this might apply a fixed penalty if
any of the weights contributing to a given hidden unit are non-zero. If they are all zero, we can
remove the unit, decreasing the model size and making inference faster.

Unfortunately, LO regularization is challenging to implement since the derivative of the regular-
ization term is not smooth, and more sophisticated fitting methods are required (see Louizos
et al., 2018). Somewhere between L2 and L0 regularization is L1 regularization or LASSO
(least absolute shrinkage and selection operator), which imposes a penalty on the absolute val-
ues of the weights. L2 regularization somewhat discourages sparsity in that the derivative of
the squared penalty decreases as the weight becomes smaller, lowering the pressure to make it
smaller still. L1 regularization does not have this disadvantage, as the derivative of the penalty
is constant. This can produce sparser solutions than L2 regularization but is much easier to
optimize than LO regularization. Sometimes both L1 and L2 regularization terms are used,
which is termed an elastic net penalty (Zou & Hastie, 2005).

A different approach to regularization is to modify the gradients of the learning algorithm
without ever explicitly formulating a new loss function (e.g., equation 9.13). This approach has
been used to promote sparsity during backpropagation (Schwarz et al., 2021).

The evidence on the effectiveness of explicit regularization is mixed. Zhang et al. (2017a) showed
that L2 regularization contributes little to generalization. It has been proven that the Lipschitz
constant of the network (how fast the function can change as we modify the input) bounds
the generalization error (Bartlett et al., 2017; Neyshabur et al., 2018). However, the Lipschitz
constant depends on the product of the spectral norms of the weight matrices €2, which are
only indirectly dependent on the magnitudes of the individual weights. Bartlett et al. (2017),
Neyshabur et al. (2018), and Yoshida & Miyato (2017) all add terms that indirectly encourage
the spectral norms to be smaller. Gouk et al. (2021) take a different approach and develop an
algorithm that constrains the Lipschitz constant of the network to be below a particular value.

Implicit regularization in gradient descent: The gradient descent step is:

@, = ¢y + - gl (9.14)

where g[¢,] is the negative of the gradient of the loss function, and « is the step size. As o — 0,
the gradient descent process can be described by a differential equation:

99 — glo). (9.15)

For typical step sizes «, the discrete and continuous versions converge to different solutions. We
can use backward error analysis to find a correction g;[¢] to the continuous version:

99 ~ glg] + o6+ .., (9.16)

so that it gives the same result as the discrete version.

Consider the first two terms of a Taylor expansion of the modified continuous solution ¢ around
initial position ¢q:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 157

¢l] ~ o+a 8—"5 +%%t‘f .
~ ¢+a(gle+agle <a§(§>] aaf 8%15’] %‘f) o
— sratel+amle)+ g (gl 42810010)|
P—
~ ¢+ agl]+o’ (gl[qb] 3 el0)) L_%, (917)

where in the second line, we have introduced the correction term (equation 9.16), and in the
final line, we have removed terms of greater order than o?.

Note that the first two terms on the right-hand side ¢, + ag[¢,] are the same as the discrete
update (equation 9.14). Hence, to make the continuous and discrete versions arrive at the same
place, the third term on the right-hand side must equal zero, allowing us to solve for g, [¢]:

g1l6] = — 5 2% g1, (918)

During training, the evolution function g[¢] is the negative of the gradient of the loss:

99~ ¢ +agl4)
0L « (8°L\ 0L
- %55) 5 (949

This is equivalent to performing continuous gradient descent on the loss function:

oL |
¢
because the right-hand side of equation 9.19 is the derivative of that in equation 9.20.

Leplg] = Lig) + - (9.20)

This formulation of implicit regularization was developed by Barrett & Dherin (2021) and
extended to stochastic gradient descent by Smith et al. (2021). Smith et al. (2020) and others
have shown that stochastic gradient descent with small or moderate batch sizes outperforms full
batch gradient descent on the test set, and this may in part be due to implicit regularization.

Relatedly, Jastrzebski et al. (2021) and Cohen et al. (2021) both show that using a large learn-
ing rate reduces the tendency of typical optimization trajectories to move to “sharper” parts of
the loss function (i.e., where at least one direction has high curvature). This implicit regular-
ization effect of large learning rates can be approximated by penalizing the trace of the Fisher
Information Matrix, which is closely related to penalizing the gradient norm in equation 9.20
(Jastrzebski et al., 2021).

Early stopping: Bishop (1995) and Sjoberg & Ljung (1995) argued that early stopping limits
the effective solution space that the training procedure can explore; given that the weights are
initialized to small values, this leads to the idea that early stopping helps prevent the weights
from getting too large. Goodfellow et al. (2016) show that under a quadratic approximation
of the loss function with parameters initialized to zero, early stopping is equivalent to L2 reg-
ularization in gradient descent. The effective regularization weight A is approximately 1/(7«)
where « is the learning rate, and 7 is the early stopping time.

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.3.6
Subspaces

158 9 Regularization

Ensembling: Ensembles can be trained using different random seeds (Lakshminarayanan
et al., 2017), hyperparameters (Wenzel et al., 2020b), or even entirely different families of
models. The models can be combined by averaging their predictions, weighting the predictions,
or stacking (Wolpert, 1992), in which the results are combined using another machine learning
model. Lakshminarayanan et al. (2017) showed that averaging the output of independently
trained networks can improve accuracy, calibration, and robustness. Conversely, Frankle et al.
(2020) showed that if we average together the weights to make one model, the network fails.
Fort et al. (2019) compared ensembling solutions that resulted from different initializations
with ensembling solutions that were generated from the same original model. For example, in
the latter case, they consider exploring around the solution in a limited subspace to find other
good nearby points. They found that both techniques provide complementary benefits but that
genuine ensembling from different random starting points provides a bigger improvement.

An efficient way of ensembling is to combine models from intermediate stages of training. To this
end, Izmailov et al. (2018) introduce stochastic weight averaging, in which the model weights
are sampled at different time steps and averaged together. As the name suggests, snapshot
ensembles (Huang et al., 2017a) also store the models from different time steps and average
their predictions. The diversity of these models can be improved by cyclically increasing and
decreasing the learning rate. Garipov et al. (2018) observed that different minima of the loss
function are often connected by a low-energy path (i.e., a path with a low loss everywhere along
it). Motivated by this observation, they developed a method that explores low-energy regions
around an initial solution to provide diverse models without retraining. This is known as fast
geomelric ensembling. A review of ensembling methods can be found in Ganaie et al. (2022).

Dropout: Dropout was first introduced by Hinton et al. (2012b) and Srivastava et al. (2014).
Dropout is applied at the level of hidden units. Dropping a hidden unit has the same effect
as temporarily setting all the incoming and outgoing weights and the bias to zero. Wan et al.
(2013) generalized dropout by randomly setting individual weights to zero. Gal & Ghahramani
(2016) and Kendall & Gal (2017) proposed Monte Carlo dropout, in which inference is computed
with several dropout patterns, and the results are averaged together. Gal & Ghahramani (2016)
argued that this could be interpreted as approximating Bayesian inference.

Dropout is equivalent to applying multiplicative Bernoulli noise to the hidden units. Similar
benefits derive from using other distributions, including the normal (Srivastava et al., 2014;
Shen et al., 2017), uniform (Shen et al., 2017), and beta distributions (Liu et al., 2019b).

Adding noise: Bishop (1995) and An (1996) added Gaussian noise to the network inputs to
improve performance. Bishop (1995) showed that this is equivalent to weight decay. An (1996)
also investigated adding noise to the weights. DeVries & Taylor (2017a) added Gaussian noise
to the hidden units. The randomized ReLU (Xu et al., 2015) applies noise in a different way by
making the activation functions stochastic.

Label smoothing: Label smoothing was introduced by Szegedy et al. (2016) for image classi-
fication but has since been shown to be helpful in speech recognition (Chorowski & Jaitly, 2017),
machine translation (Vaswani et al., 2017), and language modeling (Pereyra et al., 2017). The
precise mechanism by which label smoothing improves test performance isn’t well understood,
although Miiller et al. (2019a) show that it improves the calibration of the predicted output
probabilities. A closely related technique is DisturbLabel (Xie et al., 2016), in which a certain
percentage of the labels in each batch are randomly switched at each training iteration.

Finding wider minima: It is thought that wider minima generalize better (see figure 20.11).
Here, the exact values of the weights are less important, so performance should be robust to
errors in their estimates. One of the reasons that applying noise to parts of the network during
training is effective is that it encourages the network to be indifferent to their exact values.

Chaudhari et al. (2019) developed a variant of SGD that biases the optimization toward flat
minima, which they call entropy SGD. The idea is to incorporate local entropy as a term in the
loss function. In practice, this takes the form of one SGD-like update within another. Keskar

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 159

et al. (2017) showed that SGD finds wider minima as the batch size is reduced. This may be
because of the batch variance term that results from implicit regularization by SGD.

Ishida et al. (2020) use a technique named flooding, in which they intentionally prevent the
training loss from becoming zero. This encourages the solution to perform a random walk over
the loss landscape and drift into a flatter area with better generalization.

Bayesian approaches: For some models, including the simplified neural network model in
figure 9.11, the Bayesian predictive distribution can be computed in closed form (see Bishop,
2006; Prince, 2012). For neural networks, the posterior distribution over the parameters can-
not be represented in closed form and must be approximated. The two main approaches are
variational Bayes (Hinton & van Camp, 1993; MacKay, 1995; Barber & Bishop, 1997; Blundell
et al., 2015), in which the posterior is approximated by a simpler tractable distribution, and
Markov Chain Monte Carlo (MCMC) methods, which approximate the distribution by drawing
a set of samples (Neal, 1995; Welling & Teh, 2011; Chen et al., 2014; Ma et al., 2015; Li et al.,
2016a). The generation of samples can be integrated into SGD, and this is known as stochas-
tic gradient MCMC (see Ma et al., 2015). It has recently been discovered that “cooling” the
posterior distribution over the parameters (making it sharper) improves predictions from these
models (Wenzel et al., 2020a), but this is not currently fully understood (see Noci et al., 2021).

Transfer learning: Transfer learning for visual tasks works extremely well (Sharif Razavian
et al., 2014) and has supported rapid progress in computer vision, including the original AlexNet
results (Krizhevsky et al., 2012). Transfer learning has also impacted natural language process-
ing (NLP), where many models are based on pre-trained features from the BERT model (Devlin
et al., 2019). More information can be found in Zhuang et al. (2020) and Yang et al. (2020b).

Self-supervised learning: Self-supervised learning techniques for images have included in-
painting masked image regions (Pathak et al., 2016), predicting the relative position of patches
in an image (Doersch et al., 2015), re-arranging permuted image tiles back into their original
configuration (Noroozi & Favaro, 2016), colorizing grayscale images (Zhang et al., 2016b), and
transforming rotated images back to their original orientation (Gidaris et al., 2018). In Sim-
CLR (Chen et al., 2020c), a network is learned that maps versions of the same image that
have been photometrically and geometrically transformed to the same representation while re-
pelling versions of different images, with the goal of becoming indifferent to irrelevant image
transformations. Jing & Tian (2020) present a survey of self-supervised learning in images.

Self-supervised learning in NLP can be based on predicting masked words(Devlin et al., 2019),
predicting the next word in a sentence (Radford et al., 2019; Brown et al., 2020), or predicting
whether two sentences follow one another (Devlin et al., 2019). In automatic speech recognition,
the Wav2Vec model (Schneider et al., 2019) aims to distinguish an original audio sample from
one where 10ms of audio has been swapped out from elsewhere in the clip. Self-supervision
has also been applied to graph neural networks (chapter 13). Tasks include recovering masked
features (You et al., 2020) and recovering the adjacency structure of the graph (Kipf & Welling,
2016). Liu et al. (2023a) review self-supervised learning for graph models.

Data augmentation: Data augmentation for images dates back to at least LeCun et al.
(1998) and contributed to the success of AlexNet (Krizhevsky et al., 2012), in which the dataset
was increased by a factor of 2048. Image augmentation approaches include geometric transfor-
mations, changing or manipulating the color space, noise injection, and applying spatial filters.
More elaborate techniques include randomly mixing images (Inoue, 2018; Summers & Dinneen,
2019), randomly erasing parts of the image (Zhong et al., 2020), style transfer (Jackson et al.,
2019), and randomly swapping image patches (Kang et al., 2017). In addition, many studies
have used generative adversarial networks or GANs (see chapter 15) to produce novel but plau-
sible data examples (e.g., Calimeri et al., 2017). In other cases, the data have been augmented
with adversarial examples (Goodfellow et al., 2015a), which are minor perturbations of the
training data that cause the example to be misclassified. A review of data augmentation for
images can be found in Shorten & Khoshgoftaar (2019).

Draft: please send errata to udlbookmail@gmail.com.

160 9 Regularization

Augmentation methods for acoustic data include pitch shifting, time stretching, dynamic range
compression, and adding random noise (e.g., AbeBer et al., 2017; Salamon & Bello, 2017; Xu
et al., 2015; Lasseck, 2018), as well as mixing data pairs (Zhang et al., 2017¢; Yun et al., 2019),
masking features (Park et al., 2019), and using GANs to generate new data (Mun et al., 2017).
Augmentation for speech data includes vocal tract length perturbation (Jaitly & Hinton, 2013;
Kanda et al., 2013), style transfer (Gales, 1998; Ye & Young, 2004), adding noise (Hannun et al.,
2014), and synthesizing speech (Gales et al., 2009).

Augmentation methods for text include adding noise at a character level by switching, deleting,
and inserting letters (Belinkov & Bisk, 2018; Feng et al., 2020), or by generating adversarial
examples (Ebrahimi et al., 2018), using common spelling mistakes (Coulombe, 2018), randomly
swapping or deleting words (Wei & Zou, 2019), using synonyms (Kolomiyets et al., 2011),
altering adjectives (Li et al., 2017c), passivization (Min et al., 2020), using generative models
to create new data (Qiu et al., 2020), and round-trip translation to another language and back
(Aiken & Park, 2010). Augmentation methods for text are reviewed by Bayer et al. (2022).

Problems

Problem 9.1 Consider a model where the prior distribution over the parameters is a normal
distribution with mean zero and variance Ji so that

J
Pr(¢) = [[Normy, [0, 03], (9.21)

j=1

where j indexes the model parameters. We now maximize [[_, Pr(y:|xi, ¢)Pr(¢). Show that
the associated loss function of this model is equivalent to L2 regularization.

Problem 9.2 How do the gradients of the loss function change when L2 regularization (equa-
tion 9.5) is added?

Problem 9.3" Consider a linear regression model y = ¢¢ + ¢1z with input x, output y, and
parameters ¢o and ¢1. Assume we have [training examples {x;,y;} and use a least squares
loss. Consider adding Gaussian noise with mean zero and variance o2 to the inputs x; at each
training iteration. What is the expected gradient update?

Problem 9.4" Derive the loss function for multiclass classification when we use label smooth-
ing so that the target probability distribution has 0.9 at the correct class and the remaining
probability mass of 0.1 is divided between the remaining D, — 1 classes.

Problem 9.5 Show that the weight decay parameter update with decay rate A:

oL
¢<—(1—/\)¢—a%’

on the original loss function L[¢] is equivalent to a standard gradient update using L2 regular-
ization so that the modified loss function L[¢] is:

(9.22)

- A 5
Li¢] = L[g] + o~ Ek: i (9.23)
where ¢ are the parameters, and « is the learning rate.

Problem 9.6 Consider a model with parameters ¢ = [¢, ¢;]". Draw the L0, L1, and L1
regularization terms in a similar form to figure 9.1b. The LP regularization term is ZdD:l |pal”.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.1

Chapter 10

Convolutional networks

Chapters 2-9 introduced the supervised learning pipeline for deep neural networks. How-
ever, these chapters only considered fully connected networks with a single path from
input to output. Chapters 10-13 introduce more specialized network components with
sparser connections, shared weights, and parallel processing paths. This chapter de-
scribes convolutional layers, which are mainly used for processing image data.

Images have three properties that suggest the need for specialized model architec-
ture. First, they are high-dimensional. A typical image for a classification task contains
224 %224 RGB values (i.e., 150,528 input dimensions). Hidden layers in fully connected
networks are generally larger than the input size, so even for a shallow network, the
number of weights would exceed 150, 5282, or 22 billion. This poses obvious practical
problems in terms of the required training data, memory, and computation.

Second, nearby image pixels are statistically related. However, fully connected net-
works have no notion of “nearby” and treat the relationship between every input equally.
If the pixels of the training and test images were randomly permuted in the same way,
the network could still be trained with no practical difference. Third, the interpretation
of an image is stable under geometric transformations. An image of a tree is still an
image of a tree if we shift it leftwards by a few pixels. However, this shift changes every
input to the network. Hence, a fully connected model must learn the patterns of pixels
that signify a tree separately at every position, which is clearly inefficient.

Convolutional layers process each local image region independently, using parameters
shared across the whole image. They use fewer parameters than fully connected layers,
exploit the spatial relationships between nearby pixels, and don’t have to re-learn the
interpretation of the pixels at every position. A network predominantly consisting of
convolutional layers is known as a convolutional neural network or CNN.

Invariance and equivariance

We argued above that some properties of images (e.g., tree texture) are stable under
transformations. In this section, we make this idea more mathematically precise. A

Draft: please send errata to udlbookmail@gmail.com.

162 10 Convolutional networks

a) c) e)

Figure 10.1 Invariance and equivariance for translation. a-b) In image classi-
fication, the goal is to categorize both images as “mountain” regardless of the
horizontal shift that has occurred. In other words, we require the network pre-
diction to be invariant to translation. c,e) The goal of semantic segmentation is
to associate a label with each pixel. d,f) When the input image is translated, we
want the output (colored overlay) to translate in the same way. In other words,
we require the output to be equivariant with respect to translation. Panels c—f)
adapted from Bousselham et al. (2021).

function f[x] of an image x is invariant to a transformation t[x] if:

ft[x]] = f[x]. (10.1)

In other words, the output of the function f[x] is the same regardless of the transfor-
mation t[x]. Networks for image classification should be invariant to geometric trans-
formations of the image (figure 10.1a-b). The network f[x] should identify an image as
containing the same object, even if it has been translated, rotated, flipped, or warped.
A function {[x] of an image x is equivariant or covariant to a transformation t[x] if:

flt[x]] = t[fx]]. (10.2)

In other words, f[x] is equivariant to the transformation t[x] if its output changes in
the same way under the transformation as the input. Networks for per-pixel image
segmentation should be equivariant to transformations (figure 10.1c—f); if the image is
translated, rotated, or flipped, the network f[x] should return a segmentation that has
been transformed in the same way.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.2

10.2.1

10.2 Convolutional networks for 1D inputs 163

Figure 10.2 1D convolution with kernel size three. Each output z; is a weighted
sum of the nearest three inputs x;—1, x;, and x;11, where the weights are w =
[wi,w2,ws]. a) Output 22 is computed as z2 = w11 +w2x2 +wszs. b) Output z3
is computed as z3 = w12 + wax3 + wszs. ¢) At position zi1, the kernel extends
beyond the first input 1. This can be handled by zero padding, in which we
assume values outside the input are zero. The final output is treated similarly.
d) Alternatively, we could only compute outputs where the kernel fits within the
input range (“valid” convolution); now, the output will be smaller than the input.

Convolutional networks for 1D inputs

Convolutional networks consist of a series of convolutional layers, each of which is equiv-
ariant to translation. They also typically include pooling mechanisms that induce partial
invariance to translation. For clarity of exposition, we first consider convolutional net-
works for 1D data, which are easier to visualize. In section 10.3, we progress to 2D
convolution, which can be applied to image data.

1D convolution operation

Convolutional layers are network layers based on the convolution operation. In 1D, a
convolution transforms an input vector x into an output vector z so that each output
z; is a weighted sum of nearby inputs. The same weights are used at every position and
are collectively called the convolution kernel or filter. The region over which inputs are
weighted and summed is termed the kernel size. For a kernel size of three, we have:

Zi = W1Ti—1 + WaZ; + W3Tit1, (103)

where w = [wy,ws,ws3]T is the kernel (figure 10.2).! Notice that the convolution oper-

ation is equivariant with respect to translation. If we translate the input z, then the
corresponding output z is translated in the same way.

IStrictly speaking, this is a cross-correlation and not a convolution, in which the weights would be
flipped relative to the input (so we would switch ;1 with z;41). Regardless, this (incorrect) definition
is the usual convention in machine learning.

Draft: please send errata to udlbookmail@gmail.com.

Problem 10.1

10.2.2

10.2.3

164 10 Convolutional networks

&
Size = 3 Size = 3

Stride = 2 Stride = 2 Stride = 1 Stride = 1
Dilation = 1 Dilation =1 Dilation = 1 Dilation = 2

Figure 10.3 Stride, kernel size, and dilation. a) With a stride of two, we evaluate
the kernel at every other position, so the first output z; is computed from a
weighted sum centered at z1, and b) the second output z2 is computed from a
weighted sum centered at z3 and so on. ¢) The kernel size can also be changed.
With a kernel size of five, we take a weighted sum of the nearest five inputs. d) In
dilated or atrous convolution, we intersperse zeros in the weight vector to allow
us to combine information over a large area using fewer weights.

Padding

Equation 10.3 shows that each output is computed by taking a weighted sum of the
previous, current, and subsequent positions in the input. This begs the question of how
to deal with the first output (where there is no previous input) and the final output
(where there is no subsequent input).

There are two common approaches. The first is to pad the edges of the inputs with
new values and proceed as usual. Zero padding assumes the input is zero outside its
valid range (figure 10.2¢). Other possibilities include treating the input as circular or
reflecting it at the boundaries. The second approach is to discard the output positions
where the kernel exceeds the range of input positions. These valid convolutions have the
advantage of introducing no extra information at the edges of the input. However, they
have the disadvantage that the representation decreases in size.

Stride, kernel size, and dilation
In the example above, each output was a sum of the nearest three inputs. However,

this is just one of a larger family of convolution operations, the members of which are
distinguished by their stride, kernel size, and dilation rate. When we evaluate the output

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.2.4

10.2.5

10.2 Convolutional networks for 1D inputs 165

at every position, we term this a stride of one. However, it is also possible to shift the
kernel by a stride greater than one. If we have a stride of two, we create roughly half
the number of outputs (figure 10.3a-b).

The kernel size can be increased to integrate over a larger area (figure 10.3¢). How-
ever, it typically remains an odd number so that it can be centered around the current
position. Increasing the kernel size has the disadvantage of requiring more weights. This
leads to the idea of dilated or atrous convolutions, in which the kernel values are inter-
spersed with zeros. For example, we can turn a kernel of size five into a dilated kernel of
size three by setting the second and fourth elements to zero. We still integrate informa-
tion from a larger input region but only require three weights to do this (figure 10.3d).
The number of zeros we intersperse between the weights determines the dilation rate.

Convolutional layers
A convolutional layer computes its output by convolving the input, adding a bias 3, and

passing each result through an activation function ale]. With kernel size three, stride
one, and dilation rate one, the i*" hidden unit h; would be computed as:

hi = alf+wizi—1 + war; + w3xit1]

3
a Bﬂ-zwjl'iJrj,Q 5 (104)

Jj=1

where the bias 8 and kernel weights wq,ws,ws are trainable parameters, and (with zero
padding) we treat the input = as zero when it is out of the valid range. This is a special
case of a fully connected layer that computes the i** hidden unit as:

D
hi = a /Bi+zwijxj . (105)
J=1

If there are D inputs o and D hidden units h,, this fully connected layer would have D?
weights wee and D biases 3,. The convolutional layer only uses three weights and one
bias. A fully connected layer can reproduce this exactly if most weights are set to zero
and others are constrained to be identical (figure 10.4).

Channels
If we only apply a single convolution, information will inevitably be lost; we are averaging
nearby inputs, and the ReLU activation function clips results that are less than zero.

Hence, it is usual to compute several convolutions in parallel. Each convolution produces
a new set of hidden variables, termed a feature map or channel.

Draft: please send errata to udlbookmail@gmail.com.

Problems 10.2-10.4

Problem 10.5

10 Convolutional networks

b)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

hi
ha
h3
hy
hs
he

T1 g Tz Ty Ty Tg d) Tr1 o X3z Ty T Tg

hi

ha
hs3
hy
hs
he

Figure 10.4 Fully connected vs. convolutional layers. a) A fully connected layer
has a weight connecting each input x to each hidden unit h (colored arrows)
and a bias for each hidden unit (not shown). b) Hence, the associated weight
matrix € contains 36 weights relating the six inputs to the six hidden units. ¢) A
convolutional layer with kernel size three computes each hidden unit as the same
weighted sum of the three neighboring inputs (arrows) plus a bias (not shown).
d) The weight matrix is a special case of the fully connected matrix where many
weights are zero and others are repeated (same colors indicate same value, white
indicates zero weight). e) A convolutional layer with kernel size three and stride
two computes a weighted sum at every other position. f) This is also a special
case of a fully connected network with a different sparse weight structure.

Figure 10.5 Channels. Typically, multiple convolutions are applied to the input x
and stored in channels. a) A convolution is applied to create hidden units hi
to he, which form the first channel. b) A second convolution operation is applied
to create hidden units A7 to hi2, which form the second channel. The channels
are stored in a 2D array H; that contains all the hidden units in the first hidden
layer. c) If we add a further convolutional layer, there are now two channels at
each input position. Here, the 1D convolution defines a weighted sum over both
input channels at the three closest positions to create each new output channel.

10.2.6

10.2.7

10.2 Convolutional networks for 1D inputs 167

Figure 10.5a-b illustrates this with two convolution kernels of size three and with
zero padding. The first kernel computes a weighted sum of the nearest three pixels, adds
a bias, and passes the results through the activation function to produce hidden units Ay
to hg. These comprise the first channel. The second kernel computes a different weighted
sum of the nearest three pixels, adds a different bias, and passes the results through the
activation function to create hidden units h7 to his. These comprise the second channel.

In general, the input and the hidden layers all have multiple channels (figure 10.5¢).
If the incoming layer has C; channels and kernel size K, the hidden units in each output
channel are computed as a weighted sum over all C; channels and K kernel positions
using a weight matrix © € R*X and one bias. Hence, if there are C, channels in the
next layer, then we need € RE*CoxK weights and 3 € R biases.

Convolutional networks and receptive fields

Chapter 4 described deep networks, which consisted of a sequence of fully connected
layers. Similarly, convolutional networks comprise a sequence of convolutional layers.
The receptive field of a hidden unit in the network is the region of the original input that
feeds into it. Consider a convolutional network where each convolutional layer has kernel
size three. The hidden units in the first layer take a weighted sum of the three closest
inputs, so have receptive fields of size three. The units in the second layer take a weighted
sum of the three closest positions in the first layer, which are themselves weighted sums
of three inputs. Hence, the hidden units in the second layer have a receptive field of size
five. In this way, the receptive field of units in successive layers increases, and information
from across the input is gradually integrated (figure 10.6).

Example: MNIST-1D

We now apply a convolutional network to the MNIST-1D data (see figure 8.1). The
input x is a 40D vector, and the output f is a 10D vector that is passed through a
softmax layer to produce class probabilities. We use a network with three hidden layers
(figure 10.7). The fifteen channels of the first hidden layer H; are each computed using
a kernel size of three and a stride of two with “valid” padding, giving nineteen spatial
positions. The second hidden layer Hs is also computed using a kernel size of three, a
stride of two, and “valid” padding. The third hidden layer is computed similarly. At this
stage, the representation has four spatial positions and fifteen channels. These values
are reshaped into a vector of size sixty, which is mapped by a fully connected layer to
the ten output activations.

This network was trained for 100,000 steps using SGD without momentum, a learning
rate of 0.01, and a batch size of 100 on a dataset of 4,000 examples. We compare this to
a fully connected network with the same number of layers and hidden units (i.e., three
hidden layers with 285, 135, and 60 hidden units, respectively). The convolutional net-
work has 2,050 parameters, and the fully connected network has 150,185 parameters. By
the logic of figure 10.4, the convolutional network is a special case of the fully connected

Draft: please send errata to udlbookmail@gmail.com.

Problems 10.6-10.8

Notebook 10.1
1D convolution

Problems 10.9-10.11

Problem 10.12

168 10 Convolutional networks

OOO000

Qe R3><4><3

Input, x Hidden layer, H; Input, x Hidden layer, H; Hidden layer, Hy

00/0/0/®

) Qc R4><5><3
Stride=2

OO0O000

Input, x Hidden layer, Hy Hidden layer, H, Hidden layer, H3

d)

3

Qc R5X6><3

0000000
0000000

OOO00000!

([€10]0/0/0/0/0/0000)

[O

Input, x Hidden layer, H; Hidden layer, Hy Hidden layer, H3 Hidden layer, Hy

Figure 10.6 Receptive fields for network with kernel width of three. a) An input
with eleven dimensions feeds into a hidden layer with three channels and convo-
lution kernel of size three. The pre-activations of the three highlighted hidden
units in the first hidden layer H; are different weighted sums of the nearest three
inputs, so the receptive field in H; has size three. b) The pre-activations of the
four highlighted hidden units in layer Hy each take a weighted sum of the three
channels in layer H; at each of the three nearest positions. Each hidden unit in
layer Hi weights the nearest three input positions. Hence, hidden units in Ho
have a receptive field size of five. ¢) The hidden units in the third layer (kernel
size three, stride two) increases the receptive field size to seven. d) By the time
we add a fourth layer, the receptive field of the hidden units at position three
have a receptive field that covers the entire input.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.2 Convolutional networks for 1D inputs

169

Qp €

Bo €

x € R4
H1 €R19x15
f ¢ RO
H2 GRQXIB

oF o i

I Il I b
JEn Te 2 4x15 3
BET BB £z7 HszeR =~
Z N =N t=07) 3 22
£ 2 R e EE-IN o/
=1 3% g S W g S I = <
== - =l = = 2
Ry Sx 2 - 222002
OHhd SRR &) OHhd =50 53]
R1><15><3 Ql c R15><15><3 92 c R15X15X3 QS c R10><60

R15 /61 eRlS ﬂ2 €R15 /8 ERlO

Figure 10.7 Convolutional network for classifying MNIST-1D data (see figure 8.1).
The MNIST-1D input has dimension D; = 40. The first convolutional layer has
fifteen channels, kernel size three, stride two, and only retains “valid” positions
to make a representation with nineteen positions and fifteen channels. The fol-
lowing two convolutional layers have the same settings, gradually reducing the
representation size. Finally, a fully connected layer takes all sixty hidden units
from the third hidden layer. It outputs ten activations that are subsequently
passed through a softmax layer to produce the ten class probabilities.

Convolutional network
2,050 parameters

Test

Train
100000

Training step

b) 100

% Error

Fully connected network
150,185 parameters

Test

Train

Training step

100000

Figure 10.8 MNIST-1D results. a) The convolutional network from figure 10.7
eventually fits the training data perfectly and has ~17% test error. b) A fully
connected network with the same number of hidden layers and the number of
hidden units in each learns the training data faster but fails to generalize well with
~40% test error. The latter model can reproduce the convolutional model but
fails to do so. The convolutional structure restricts the possible mappings to those
that process every position similarly, and this restriction improves performance.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 10.2
Convolution

for MNIST-1D

10.3

Problem 10.13

Notebook 10.3
2D convolution

Problem 10.14

Appendix B.3
Tensors

170 10 Convolutional networks

one. The latter has enough flexibility to replicate the former exactly. Figure 10.8 shows
both models fit the training data perfectly. However, the test error for the convolutional
network is much less than for the fully connected network.

This discrepancy is probably not due to the difference in the number of parameters;
we know overparameterization usually improves performance (section 8.4.1). The likely
explanation is that the convolutional architecture has a superior inductive bias (i.e.,
interpolates between the training data better) because we have embodied some prior
knowledge in the architecture; we have forced the network to process each position in
the input in the same way. We know that the data were created by starting with a
template that is (among other operations) randomly translated, so this is sensible.

The fully connected network has to learn what each digit template looks like at every
position. In contrast, the convolutional network shares information across positions and
hence learns to identify each category more accurately. Another way of thinking about
this is that when we train the convolutional network, we search through a smaller family
of input/output mappings, all of which are plausible. Alternatively, the convolutional
structure can be considered a regularizer that applies an infinite penalty to most of the
solutions that a fully connected network can describe.

Convolutional networks for 2D inputs

The previous section described convolutional networks for processing 1D data. Such
networks can be applied to financial time series, audio, and text. However, convolutional
networks are more usually applied to 2D image data. The convolutional kernel is now
a 2D object. A 3x3 kernel 2 € R3*3 applied to a 2D input comprising of elements x;;
computes a single layer of hidden units h;; as:

3 3
hij = a 5+Zzwmnl’i+m—2,j+n—2) (10.6)

m=1n=1

where wy,, are the entries of the convolutional kernel. This is simply a weighted sum
over a square 3x3 input region. The kernel is translated both horizontally and vertically
across the 2D input (figure 10.9) to create an output at each position.

Often the input is an RGB image, which is treated as a 2D signal with three channels
(figure 10.10). Here, a 3x3 kernel would have 3x3x3 weights and be applied to the
three input channels at each of the 3x3 positions to create a 2D output that is the same
height and width as the input image (assuming zero padding). To generate multiple
output channels, we repeat this process with different kernel weights and append the
results to form a 3D tensor. If the kernel is size K x K, and there are C; input channels,
each output channel is a weighted sum of C; x K x K quantities plus one bias. It follows
that to compute C, output channels, we need C; x C, x K x K weights and C, biases.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.4

10.4.1

10.4 Downsampling and upsampling

171

Hidden layer, H;

hal

Hidden layer, H;

I ha2

Hidden layer, H;

ek

Hidden layer, H;

Figure 10.9 2D convolutional layer. Each output h;; computes a weighted sum of
the 3x3 nearest inputs, adds a bias, and passes the result through an activation
function. a) Here, the output hos (shaded output) is a weighted sum of the nine
positions from z12 to z34 (shaded inputs). b) Different outputs are computed by
translating the kernel across the image grid in two dimensions. ¢-d) With zero
padding, positions beyond the image’s edge are considered to be zero.

Downsampling and upsampling

The network in figure 10.7 increased receptive field size by scaling down the representa-
tion at each layer using stride two convolutions. We now consider methods for scaling
down or downsampling 2D input representations. We also describe methods for scaling
them back up (upsampling), which is useful when the output is also an image. Finally,
we consider methods to change the number of channels between layers. This is helpful
when recombining representations from two branches of a network (chapter 11).

Downsampling

There are three main approaches to scaling down a 2D representation. Here, we consider
the most common case of scaling down both dimensions by a factor of two. First, we

Draft: please send errata to udlbookmail@gmail.com.

Problem 10.15

10.4.2

Notebook 10.4
Downsampling
& upsampling

172 10 Convolutional networks

3 x 3 pixels Weights, 2

RGB input, X Hidden layer, H;

Figure 10.10 2D convolution applied to an image. The image is treated as a 2D
input with three channels corresponding to the red, green, and blue components.
With a 3x3 kernel, each pre-activation in the first hidden layer is computed by
pointwise multiplying the 3x3x3 kernel weights with the 3x3 RGB image patch
centered at the same position, summing, and adding the bias. To calculate all
the pre-activations in the hidden layer, we “slide” the kernel over the image in
both horizontal and vertical directions. The output is a 2D layer of hidden units.
To create multiple output channels, we would repeat this process with multiple
kernels, resulting in a 3D tensor of hidden units at hidden layer Hj.

can sample every other position. When we use a stride of two, we effectively apply this
method simultaneously with the convolution operation (figure 10.11a).

Second, maz pooling retains the maximum of the 2x2 input values (figure 10.11b).
This induces some invariance to translation; if the input is shifted by one pixel, many
of these maximum values remain the same. Finally, mean pooling or average pooling
averages the inputs. For all approaches, we apply downsampling separately to each
channel, so the output has half the width and height but the same number of channels.

Upsampling

The simplest way to scale up a network layer to double the resolution is to duplicate
all the channels at each spatial position four times (figure 10.12a). A second method
is max unpooling; this is used where we have previously used a max pooling operation
for downsampling, and we distribute the values to the positions they originated from
(figure 10.12b). A third approach uses bilinear interpolation to fill in the missing values
between the points where we have samples. (figure 10.12c).

A fourth approach is roughly analogous to downsampling using a stride of two. In
that method, there were half as many outputs as inputs, and for kernel size three, each
output was a weighted sum of the three closest inputs (figure 10.13a). In transposed
convolution, this picture is reversed (figure 10.13c). There are twice as many outputs

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.4 Downsampling and upsampling 173

Figure 10.11 Methods for scaling down representation size (downsampling). a)
Sub-sampling. The original 4x4 representation (left) is reduced to size 2x2 (right)
by retaining every other input. Colors on the left indicate which inputs contribute
to the outputs on the right. This is effectively what happens with a kernel of stride
two, except that the intermediate values are never computed. b) Max pooling.
Each output comprises the maximum value of the corresponding 2x2 block. c)
Mean pooling. Each output is the mean of the values in the 2x2 block.

Figure 10.12 Methods for scaling up representation size (upsampling). a) The
simplest way to double the size of a 2D layer is to duplicate each input four
times. b) In networks where we have previously used a max pooling operation
(figure 10.11b), we can redistribute the values to the same positions they originally
came from (i.e., where the maxima were). This is known as max unpooling. ¢) A

third option is bilinear interpolation between the input values.

Q.
~

) Xr1 T T3 Ty4 Ty Tg T7 Tg C) X1 T2 T3 T4
h2 h2
@) () by @) @) hy
@9 ha () e
5
&30 @ "
D OEE

Figure 10.13 Transposed convolution in 1D. a) Downsampling with kernel size
three, stride two, and zero padding. Each output is a weighted sum of three
inputs (arrows indicate weights). b) This can be expressed by a weight matrix
(same color indicates shared weight). ¢) In transposed convolution, each input
contributes three values to the output layer, which has twice as many outputs as
inputs. d) The associated weight matrix is the transpose of that in panel (b).

Draft: please send errata to udlbookmail@gmail.com.

10.4.3

10.5

10.5.1

174 10 Convolutional networks

as inputs, and each input contributes to three of the outputs. When we consider the
associated weight matrix of this upsampling mechanism (figure 10.13d), we see that it is
the transpose of the matrix for the downsampling mechanism (figure 10.13b).

Changing the number of channels

Sometimes we want to change the number of channels between one hidden layer and the
next without further spatial pooling. This is usually so we can combine the representation
with another parallel computation (see chapter 11). To accomplish this, we apply a
convolution with kernel size one. Each element of the output layer is computed by
taking a weighted sum of all the channels at the same position (figure 10.14). We can
repeat this multiple times with different weights to generate as many output channels as
we need. The associated convolution weights have size 1 x 1 x C; x C,. Hence, this is
known as 1x 1 convolution. Combined with a bias and activation function, it is equivalent
to running the same fully connected network on the channels at every position.

Applications

We conclude by describing three computer vision applications. We describe convolu-
tional networks for image classification where the goal is to assign the image to one of a
predetermined set of categories. Then we consider object detection, where the goal is to
identify multiple objects in an image and find the bounding box around each. Finally,
we describe an early system for semantic segmentation where the goal is to assign a label
to each pixel according to which object is present.

Image classification

Much of the pioneering work on deep learning in computer vision focused on image
classification using the ImageNet dataset (figure 10.15). This contains 1,281,167 training
images, 50,000 validation images, and 100,000 test images, and every image is labeled as
belonging to one of 1000 possible categories.

Most methods reshape the input images to a standard size; in a typical system,
the input x to the network is a 224x224 RGB image, and the output is a probability
distribution over the 1000 classes. The task is challenging; there are a large number
of classes, and they exhibit considerable variation (figure 10.15). In 2011, before deep
networks were applied, the state-of-the-art method classified the test images with ~ 25%
errors for the correct class being in the top five suggestions. Five years later, the best
deep learning models eclipsed human performance.

In 2012, AlexNet was the first convolutional network to perform well on this task.
It consists of eight hidden layers with ReLLU activation functions, of which the first
five are convolutional and the rest fully connected (figure 10.16). The network starts by

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.5 Applications 175

Channels

Height

Weights, 2

Input layer, H Output layer, H'

Figure 10.14 1x1 convolution. To change the number of channels without spatial
pooling, we apply a 1x1 kernel. Each output channel is computed by taking
a weighted sum of all of the channels at the same position, adding a bias, and
passing through an activation function. Multiple output channels are created by
repeating this operation with different weights and biases.

Rigidity # of instances Clutter Size in image Texture Distinct color Distinct shape

More «———> Less

Figure 10.15 Example ImageNet classification images. The model aims to assign
an input image to one of 1000 classes. This task is challenging because the
images vary widely along different attributes (columns). These include rigidity
(monkey < canoe), number of instances in image (lizard < strawberry), clutter
(compass < steel drum), size (candle <spiderweb), texture (screwdriver <leopard),
distinctiveness of color (mug < red wine), and distinctiveness of shape (headland
< bell). Adapted from Russakovsky et al. (2015).

Draft: please send errata to udlbookmail@gmail.com.

Problems 10.16-10.17

Notebook 10.5
Convolution
for MNIST

Problem 10.18

176 10 Convolutional networks

>
Figure 10.16 AlexNet (Krizhevsky et al., u‘fbb‘*
2012). The network maps a 224 x 224 Y
color image to a 1000-dimensional vec- WO®
tor representing class probabilities. The I (
network first convolves with 11x11 ker-
nels and stride 4 to create 96 channels.
It decreases the resolution again using a . L0 IR RO

. . « e
max pool operation and applies a 5x5 ot 2 4 2
convolutional layer. Another max pool- e . +q:l+ s H H
ing layer follows, and three 3x3 convo- /"' SRCISIRCIS I
lutional layers are applied. After a fi- ' = \-/q’ L I] I]
al max pooli operation, the result U

nal max pooling operation resu \x////-‘-////
is vectorized and passed through three Pt o e <0 400, o
fully connected (FC) layers and finally Qg\?@e %ﬁ*b@‘ﬁ 00@‘?’ O
the softmax layer. y&@ﬁg

downsampling the input using an 11x11 kernel with a stride of four to create 96 channels.
It then downsamples again using a max pooling layer before applying a 5x5 kernel to
create 256 channels. There are three more convolutional layers with kernel size 3x3,
eventually resulting in a 13x13 representation with 256 channels. This is resized into
a single vector of length 43,264 and then passed through three fully connected layers
containing 4096, 4096, and 1000 hidden units, respectively. The last layer is passed
through the softmax function to output a probability distribution over the 1000 classes.
The complete network contains ~60 million parameters. Most of these are in the fully
connected layers and the end of the network.

The dataset size was augmented by a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities. At test time, five different cropped and
mirrored versions of the image were run through the network, and their predictions
averaged. The system was learned using SGD with a momentum coefficient of 0.9 and a
batch size of 128. Dropout was applied in the fully connected layers, and an L2 (weight
decay) regularizer was used. This system achieved a 16.4% top-5 error rate and a 38.1%
top-1 error rate. At the time, this was an enormous leap forward in performance at a task
considered far beyond the capabilities of contemporary methods. This result revealed
the potential of deep learning and kick-started the modern era of Al research.

The VGG network was also targeted at classification in the ImageNet task and
achieved a considerably better performance of 6.8% top-5 error rate and a 23.7% top-1
error rate. This network is similarly composed of a series of interspersed convolutional
and max pooling layers, where the spatial size of the representation gradually decreases,
but the number of channels increase. These are followed by three fully connected layers
(figure 10.17). The VGG network was also trained using data augmentation, weight
decay, and dropout.

Although there were various minor differences in the training regime, the most impor-
tant change between AlexNet and VGG was the depth of the network. The latter used
19 hidden layers and 144 million parameters. The networks in figures 10.16 and 10.17
are depicted at the same scale for comparison. There was a general trend for several
years for performance on this task to improve as the depth of the networks increased,
and this is evidence that depth is important in neural networks.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.5 Applications 177

>
+0
> gah
L

v
N D > » > > > OgC &
%+ g ot 800 ot 9o a7t XQOQ EO:{Q“@

A
ég ot 3y

Q,o\“4 W 00‘\4 A Qo““ W

Figure 10.17 VGG network (Simonyan & Zisserman, 2014) depicted at the same
scale as AlexNet (see figure 10.16). This network consists of a series of convolu-
tional layers and max pooling operations, in which the spatial scale of the rep-
resentation gradually decreases, but the number of channels gradually increases.
The hidden layer after the last convolutional operation is resized to a 1D vector
and three fully connected layers follow. The network outputs 1000 activations
corresponding to the class labels that are passed through a softmax function to
create class probabilities.

10.5.2 Object detection

In object detection, the goal is to identify and localize multiple objects within the image.
An early method based on convolutional networks was You Only Look Once, or YOLO
for short. The input to the YOLO network is a 448x448 RGB image. This is passed
through 24 convolutional layers that gradually decrease the representation size using
max pooling operations while concurrently increasing the number of channels, similarly
to the VGG network. The final convolutional layer is of size 7 x 7 and has 1024 channels.
This is reshaped to a vector, and a fully connected layer maps it to 4096 values. One
further fully connected layer maps this representation to the output.

The output values encode which class is present at each of a 7x7 grid of locations
(figure 10.18a-b). For each location, the output values also encode a fixed number of
bounding boxes. Five parameters define each box: the x- and y-positions of the center,
the height and width of the box, and the confidence of the prediction (figure 10.18¢).
The confidence estimates the overlap between the predicted and ground truth bound-
ing boxes. The system is trained using momentum, weight decay, dropout, and data
augmentation. Transfer learning is employed; the network is initially trained on the
ImageNet classification task and is then fine-tuned for object detection.

After the network is run, a heuristic process is used to remove rectangles with low
confidence and to suppress predicted bounding boxes that correspond to the same object
so only the most confident one is retained.

Draft: please send errata to udlbookmail@gmail.com.

178 10 Convolutional networks

a) b) H

) d) o
icycle I_

Dog

Figure 10.18 YOLO object detection. a) The input image is reshaped to 448x448
and divided into a regular 7x7 grid. b) The system predicts the most likely class
at each grid cell. ¢) It also predicts two bounding boxes per cell, and a confidence
value (represented by thickness of line). d) During inference, the most likely
bounding boxes are retained, and boxes with lower confidence values that belong
to the same object are suppressed. Adapted from Redmon et al. (2016).

10.5.3 Semantic segmentation

The goal of semantic segmentation is to assign a label to each pixel according to the object
that it belongs to or no label if that pixel does not correspond to anything in the training
database. An early network for semantic segmentation is depicted in figure 10.19. The
input is a 224x224 RGB image, and the output is a 224x224x21 array that contains
the probability of each of 21 possible classes at each position.

The first part of the network is a smaller version of VGG (figure 10.17) that contains
thirteen rather than fifteen convolutional layers and downsizes the representation to size
14x14. There is then one more max pooling operation, followed by two fully connected
layers that map to two 1D representations of size 4096. These layers do not represent
spatial position but instead, combine information from across the whole image.

Here, the architecture diverges from VGG. Another fully connected layer reconsti-
tutes the representation into 7x7 spatial positions and 512 channels. This is followed

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

10.6

10.6 Summary 179

3
ST
Pt 2

N
w*ﬁ \

e U =
T LS & S 2 LS S
+:%0%\,+$00\%+:5 Qoo\ <5+q" 800\ <5+{b XQC‘QO?O\go"\ ot

O A ¢ 5 < 5 < o X
SIS W (T W N W@m&& W W e

>) > D MDD > DN oF
N o W) O g
o ot 804‘5+ <\‘€?“5+\804‘5t3+0KV&

>

N
°
NC

Figure 10.19 Semantic segmentation network of Noh et al. (2015). The input is a
224 %224 image, which is passed through a version of the VGG network and even-
tually transformed into a representation of size 4096 using a fully connected layer.
This contains information about the entire image. This is then reformed into a
representation of size 7x7 using another fully connected layer, and the image is
upsampled and deconvolved (transposed convolutions without upsampling) in a
mirror image of the VGG network. The output is a 224x224x21 representation
that gives the output probabilities for the 21 classes at each position.

by a series of max unpooling layers (see figure 10.12b) and deconvolution layers. These
are transposed convolutions (see figure 10.13) but in 2D and without the upsampling.
Finally, there is a 1x1 convolution to create 21 channels representing the possible classes
and a softmax operation at each spatial position to map the activations to class proba-
bilities. The downsampling side of the network is sometimes referred to as an encoder,
and the upsampling side as a decoder, so networks of this type are sometimes called
encoder-decoder networks or hourglass networks due to their shape.

The final segmentation is generated using a heuristic method that greedily searches
for the class that is most represented and infers its region, taking into account the
probabilities but also encouraging connectedness. Then the next most-represented class
is added where it dominates at the remaining unlabeled pixels. This continues until there
is insufficient evidence to add more (figure 10.20).

Summary

In convolutional layers, each hidden unit is computed by taking a weighted sum of the
nearby inputs, adding a bias, and applying an activation function. The weights and the
bias are the same at every spatial position, so there are far fewer parameters than in a
fully connected network, and the parameters don’t increase with the input image size.
To ensure that information is not lost, this operation is repeated with different weights

Draft: please send errata to udlbookmail@gmail.com.

180 10 Convolutional networks

Input Ground truth Result

Figure 10.20 Semantic segmentation results. The final result is created from the
21 probability maps by greedily selecting the best class and using a heuristic
method to find a sensible binary map based on the probabilities and their spatial
proximity. If there is enough evidence, subsequent classes are added, and their
segmentation maps are combined. Adapted from Noh et al. (2015).

and biases to create multiple channels at each spatial position.

Typical convolutional networks consist of convolutional layers interspersed with layers
that downsample by a factor of two. As the network progresses, the spatial dimensions
usually decrease by factors of two, and the number of channels increases by factors of
two. At the end of the network, there are typically one or more fully connected layers
that integrate information from across the entire input and create the desired output. If
the output is an image, a mirrored “decoder” upsamples back to the original size.

The translational equivariance of convolutional layers imposes a useful inductive bias
that increases performance for image-based tasks relative to fully connected networks.
We described image classification, object detection, and semantic segmentation networks.
Image classification performance was shown to improve as the network became deeper.
However, subsequent experiments showed that increasing the network depth indefinitely
doesn’t continue to help; after a certain depth, the system becomes difficult to train.
This is the motivation for residual connections, which are the topic of the next chapter.

Notes

Dumoulin & Visin (2016) present an overview of the mathematics of convolutions that expands
on the brief treatment in this chapter.

Convolutional networks: Early convolutional networks were developed by Fukushima &
Miyake (1982), LeCun et al. (1989a), and LeCun et al. (1989b). Initial applications included

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 181

handwriting recognition (LeCun et al., 1989a; Martin, 1993), face recognition (Lawrence et al.,
1997), phoneme recognition (Waibel et al., 1989), spoken word recognition (Bottou et al., 1990),
and signature verification (Bromley et al., 1993). However, convolutional networks were popu-
larized by LeCun et al. (1998), who built a system called LeNet for classifying 28 x 28 grayscale
images of handwritten digits. This is immediately recognizable as a precursor of modern net-
works; it uses a series of convolutional layers, followed by fully connected layers, sigmoid activa-
tions rather than ReLUs, and average pooling rather than max pooling. AlexNet (Krizhevsky
et al., 2012) is widely considered the starting point for modern deep convolutional networks.

ImageNet Challenge: Deng et al. (2009) collated the ImageNet database and the associated
classification challenge drove progress in deep learning for several years after AlexNet. Notable
subsequent winners of this challenge include the network-in-network architecture (Lin et al.,
2014), which alternated convolutions with fully connected layers that operated independently
on all of the channels at each position (i.e., 1x1 convolutions). Zeiler & Fergus (2014) and
Simonyan & Zisserman (2014) trained larger and deeper architectures that were fundamentally
similar to AlexNet. Szegedy et al. (2017) developed an architecture called GoogLeNet, which
introduced inception blocks. These use several parallel paths with different filter sizes, which
are then recombined. This effectively allowed the system to learn the filter size.

The trend was for performance to improve with increasing depth. However, it ultimately became
difficult to train deeper networks without modifications; these include residual connections
and normalization layers, both of which are described in the next chapter. Progress in the
ImageNet challenges is summarized in Russakovsky et al. (2015). A more general survey of
image classification using convolutional networks can be found in Rawat & Wang (2017). The
improvement of image classification networks over time is visualized in figure 10.21.

Types of convolutional layers: Atrous or dilated convolutions were introduced by Chen
et al. (2018¢c) and Yu & Koltun (2015). Transposed convolutions were introduced by Long et al.
(2015). Odena et al. (2016) pointed out that they can lead to checkerboard artifacts and should
be used with caution. Lin et al. (2014) is an early example of convolution with 1x1 filters.

Many variants of the standard convolutional layer aim to reduce the number of parameters.
These include depthwise or channel-separate convolution (Howard et al., 2017; Tran et al., 2018),
in which a different filter convolves each channel separately to create a new set of channels. For
a kernel size of K x K with C input channels and C' output channels, this requires K x K x C
parameters rather than the K x K x C x C' parameters in a regular convolutional layer. A
related approach is grouped convolutions (Xie et al., 2017), where each convolution kernel is
only applied to a subset of the channels with a commensurate reduction in the parameters. In
fact, grouped convolutions were used in AlexNet for computational reasons; the whole network
could not run on a single GPU, so some channels were processed on one GPU and some on
another, with limited interaction points. Separable convolutions treat each kernel as an outer
product of 1D vectors; they use C' + K + K parameters for each of the C' channels. Partial
convolutions (Liu et al., 2018a) are used when inpainting missing pixels and account for the
partial masking of the input. Gated convolutions learn the mask from the previous layer (Yu
et al., 2019; Chang et al., 2019b). Hu et al. (2018b) propose squeeze-and-excitation networks
which re-weight the channels using information pooled across all spatial positions.

Downsampling and upsampling: Average pooling dates back to at least LeCun et al. (1989a)
and max pooling to Zhou & Chellappa (1988). Scherer et al. (2010) compared these methods
and concluded that max pooling was superior. The max unpooling method was introduced by
Zeiler et al. (2011) and Zeiler & Fergus (2014). Max pooling can be thought of as applying

Draft: please send errata to udlbookmail@gmail.com.

Appendix B.3.2
Vector norms

182 10 Convolutional networks

50
°9 °
_ (@) 80 .. ImageGPT
s | ® 8
S AlexN oo
£ exNet 0 o o)
= 8§38 . 8¢
a 1 a O ..
k) VGG o) ooa °
DenseNet
ResNet-200
ViT)
SWIN DaViT
0 r T - - -
2012 2014 2016 2018 2020 2022 2024
Year

Figure 10.21 ImageNet performance. Each circle represents a different published
model. Blue circles represent models that were state-of-the-art. Models dis-
cussed in this book are also highlighted. The AlexNet and VGG networks were
remarkable for their time but are now far from state of the art. ResNet-200 and
DenseNet are discussed in chapter 11. ImageGPT, ViT, SWIN, and DaViT are
discussed in chapter 12. Adapted from https://paperswithcode.com/sota/image-
classification-on-imagenet.

an Lo norm to the hidden units that are to be pooled. This led to applying other Lj norms
(Springenberg et al., 2015; Sainath et al., 2013), although these require more computation and
are not widely used. Zhang (2019) introduced maz-blur-pooling, in which a low-pass filter is
applied before downsampling to prevent aliasing, and showed that this improves generalization
over translation of the inputs and protects against adversarial attacks (see section 20.4.6).

Shi et al. (2016) introduced PizelShuffle, which used convolutional filters with a stride of 1/s
to scale up 1D signals by a factor of s. Only the weights that lie exactly on positions are
used to create the outputs, and the ones that fall between positions are discarded. This can
be implemented by multiplying the number of channels in the kernel by a factor of s, where
the s*" output position is computed from just the s subset of channels. This can be trivially
extended to 2D convolution, which requires s? channels.

Convolution in 1D and 3D: Convolutional networks are usually applied to images but have
also been applied to 1D data in applications that include speech recognition (Abdel-Hamid
et al., 2012), sentence classification (Zhang et al., 2015; Conneau et al., 2017), electrocardiogram
classification (Kiranyaz et al., 2015), and bearing fault diagnosis (Eren et al., 2019). A survey
of 1D convolutional networks can be found in Kiranyaz et al. (2021). Convolutional networks
have also been applied to 3D data, including video (Ji et al., 2012; Saha et al., 2016; Tran et al.,
2015) and volumetric measurements (Wu et al., 2015b; Maturana & Scherer, 2015).

Invariance and equivariance: Part of the motivation for convolutional layers is that they
are approximately equivariant with respect to translation, and part of the motivation for max

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

Notes 183

pooling is to induce invariance to small translations. Zhang (2019) considers the degree to
which convolutional networks really have these properties and proposes the max-blur-pooling
modification that demonstrably improves them. There is considerable interest in making net-
works equivariant or invariant to other types of transformations, such as reflections, rotations,
and scaling. Sifre & Mallat (2013) constructed a system based on wavelets that induced both
translational and rotational invariance in image patches and applied this to texture classifica-
tion. Kanazawa et al. (2014) developed locally scale-invariant convolutional neural networks.
Cohen & Welling (2016) exploited group theory to construct group CNNs, which are equivariant
to larger families of transformations, including reflections and rotations. Esteves et al. (2018)
introduced polar transformer networks, which are invariant to translations and equivariant to
rotation and scale. Worrall et al. (2017) developed harmonic networks, the first example of a
group CNN that was equivariant to continuous rotations.

Initialization and regularization: Convolutional networks are typically initialized using
Xavier initialization (Glorot & Bengio, 2010) or He initialization (He et al., 2015), as described
in section 7.5. However, the ConvolutionOrthogonal initializer (Xiao et al., 2018a) is specialized
for convolutional networks (Xiao et al., 2018a). Networks of up to 10,000 layers can be trained
using this initialization without the need for residual connections.

Dropout is effective for fully connected networks but less so for convolutional layers (Park &
Kwak, 2016). This may be because neighboring image pixels are highly correlated, so if a hidden
unit drops out, the same information is passed on via adjacent positions. This is the motivation
for spatial dropout and cutout. In spatial dropout (Tompson et al., 2015), entire feature maps
are discarded instead of individual pixels. This circumvents the problem of neighboring pixels
carrying the same information. Similarly, DeVries & Taylor (2017b) propose cutout, in which a
square patch of each input image is masked at training time. Wu & Gu (2015) modified max
pooling for dropout layers using a method that involves sampling from a probability distribution
over the constituent elements rather than always taking the maximum.

Adaptive Kernels: The inception block (Szegedy et al., 2017) applies convolutional filters of
different sizes in parallel and, as such, provides a crude mechanism by which the network can
learn the appropriate filter size. Other work has investigated learning the scale of convolutions
as part of the training process (e.g., Pintea et al., 2021; Romero et al., 2021) or the stride of
downsampling layers (Riad et al., 2022).

In some systems, the kernel size is changed adaptively based on the data. This is sometimes in
the context of guided convolution, where one input is used to help guide the computation from
another input. For example, an RGB image might be used to help upsample a low-resolution
depth map. Jia et al. (2016) directly predicted the filter weights themselves using a different
network branch. Xiong et al. (2020b) change the kernel size adaptively. Su et al. (2019a)
moderate weights of fixed kernels by a function learned from another modality. Dai et al.
(2017) learn offsets of weights so that they do not have to be applied in a regular grid.

Object detection and semantic segmentation: Object detection methods can be divided
into proposal-based and proposal-free schemes. In the former case, processing occurs in two
stages. A convolutional network ingests the whole image and proposes regions that might
contain objects. These proposal regions are then resized, and a second network analyzes them
to establish whether there is an object there and what it is. An early example of this approach
was R-CNN (Girshick et al., 2014). This was subsequently extended to allow end-to-end training
(Girshick, 2015) and to reduce the cost of the region proposals (Ren et al., 2015). Subsequent
work on feature pyramid networks improved both performance and speed by combining features

Draft: please send errata to udlbookmail@gmail.com.

Problem 10.19

184 10 Convolutional networks

across multiple scales Lin et al. (2017b). In contrast, proposal-free schemes perform all the
processing in a single pass. YOLO Redmon et al. (2016), which was described in section 10.5.2,
is the most celebrated example of a proposal-free scheme. The most recent iteration of this
framework at the time of writing is YOLOv7 (Wang et al., 2022a). A recent review of object
detection can be found in Zou et al. (2023).

The semantic segmentation network described in section 10.5.3 was developed by Noh et al.
(2015). Many subsequent approaches have been variations of U-Net (Ronneberger et al., 2015),
which is described in section 11.5.3. Recent surveys of semantic segmentation can be found in
Minaee et al. (2021) and Ulku & Akagilindiiz (2022).

Visualizing Convolutional Networks: The dramatic success of convolutional networks led
to a series of efforts to visualize the information they extract from the image (see Qin et al., 2018,
for a review). Erhan et al. (2009) visualized the optimal stimulus that activated a hidden unit
by starting with an image containing noise and then optimizing the input to make the hidden
unit most active using gradient ascent. Zeiler & Fergus (2014) trained a network to reconstruct
the input and then set all the hidden units to zero except the one they were interested in;
the reconstruction then provides information about what drives the hidden unit. Mahendran
& Vedaldi (2015) visualized an entire layer of a network. Their network inversion technique
aimed to find an image that resulted in the activations at that layer but also incorporates prior
knowledge that encourages this image to have similar statistics to natural images.

Finally, Bau et al. (2017) introduced network dissection. Here, a series of images with known
pixel labels capturing color, texture, and object type are passed through the network, and the
correlation of a hidden unit with each property is measured. This method has the advantage
that it only uses the forward pass of the network and does not require optimization. These
methods did provide some partial insight into how the network processes images. For example,
Bau et al. (2017) showed that earlier layers correlate more with texture and color and later
layers with the object type. However, it is fair to say that fully understanding the processing
of networks containing millions of parameters is currently not possible.

Problems

Problem 10.1* Show that the operation in equation 10.4 is equivariant with respect to transla-
tion.

Problem 10.2 Equation 10.3 defines 1D convolution with a kernel size of three, stride of one,
and dilation one. Write out the equivalent equation for the 1D convolution with a kernel size
of three and a stride of two as pictured in figure 10.3a-b.

Problem 10.3 Write out the equation for the 1D dilated convolution with a kernel size of three
and a dilation rate of two, as pictured in figure 10.3d.

Problem 10.4 Write out the equation for a 1D convolution with kernel size of seven, a dilation
rate of three, and a stride of three.

Problem 10.5 Draw weight matrices in the style of figure 10.4d for (i) the strided convolution

in figure 10.3a-b, (ii) the convolution with kernel size 5 in figure 10.3¢c, and (iii) the dilated
convolution in figure 10.3d.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 185

Problem 10.6" Draw a 6 x 12 weight matrix in the style of figure 10.4d relating the inputs z1, . .., z¢
to the outputs hi, ..., hi2 in the multi-channel convolution as depicted in figures 10.5a—b.

Problem 10.7" Draw a 12x6 weight matrix in the style of figure 10.4d relating the inputs h1, ..., his
to the outputs hf,...,hg in the multi-channel convolution in figure 10.5c.

Problem 10.8 Consider a 1D convolutional network where the input has three channels. The
first hidden layer is computed using a kernel size of three and has four channels. The second
hidden layer is computed using a kernel size of five and has ten channels. How many biases and
how many weights are needed for each of these two convolutional layers?

Problem 10.9 A network consists of three 1D convolutional layers. At each layer, a zero-padded
convolution with kernel size three, stride one, and dilation one is applied. What size is the
receptive field of the hidden units in the third layer?

Problem 10.10 A network consists of three 1D convolutional layers. At each layer, a zero-
padded convolution with kernel size seven, stride one, and dilation one is applied. What size is
the receptive field of hidden units in the third layer?

Problem 10.11 Consider a convolutional network with 1D input x. The first hidden layer H; is
computed using a convolution with kernel size five, stride two, and a dilation rate of one. The
second hidden layer Hs is computed using a convolution with kernel size three, stride one, and
a dilation rate of one. The third hidden layer Hs is computed using a convolution with kernel
size five, stride one, and a dilation rate of two. What are the receptive field sizes at each hidden
layer?

Problem 10.12 The 1D convolutional network in figure 10.7 was trained using stochastic gradient
descent with a learning rate of 0.01 and a batch size of 100 on a training dataset of 4,000 examples
for 100,000 steps. How many epochs was the network trained for?

Problem 10.13 Draw a weight matrix in the style of figure 10.4d that shows the relationship
between the 24 inputs and the 24 outputs in figure 10.9.

Problem 10.14 Consider a 2D convolutional layer with kernel size 5x5 that takes 3 input
channels and returns 10 output channels. How many convolutional weights are there? How
many biases?

Problem 10.15 Draw a weight matrix in the style of figure 10.4d that samples every other
variable in a 1D input (i.e., the 1D analog of figure 10.11a). Show that the weight matrix for
1D convolution with kernel size and stride two is equivalent to composing the matrices for 1D
convolution with kernel size one and this sampling matrix.

Problem 10.16" Consider the AlexNet network (figure 10.16). How many parameters are used
in each convolutional and fully connected layer? What is the total number of parameters?

Problem 10.17 What is the receptive field size at each of the first three layers of AlexNet
(figure 10.16)7

Problem 10.18 How many weights and biases are there at each convolutional layer and fully
connected layer in the VGG architecture (figure 10.17)?

Problem 10.19* Consider two hidden layers of size 224x224 with C1 and C5 channels, respec-
tively, connected by a 3x3 convolutional layer. Describe how to initialize the weights using He
initialization.

Draft: please send errata to udlbookmail@gmail.com.

11.1

Chapter 11

Residual networks

The previous chapter described how image classification performance improved as the
depth of convolutional networks was extended from eight layers (AlexNet) to eighteen
layers (VGG). This led to experimentation with even deeper networks. However, per-
formance decreased again when many more layers were added.

This chapter introduces residual blocks. Here, each network layer computes an addi-
tive change to the current representation instead of transforming it directly. This allows
deeper networks to be trained but causes an exponential increase in the activation mag-
nitudes at initialization. Residual blocks employ batch normalization to compensate for
this, which re-centers and rescales the activations at each layer.

Residual blocks with batch normalization allow much deeper networks to be trained,
and these networks improve performance across a variety of tasks. Architectures that
combine residual blocks to tackle image classification, medical image segmentation, and
human pose estimation are described.

Sequential processing

Every network we have seen so far processes the data sequentially; each layer receives
the previous layer’s output and passes the result to the next (figure 11.1). For example,
a three-layer network is defined by:

hy = fi[x,¢]
hy = fylhy, ¢y]
hy = f3[hy, @3]
y = fi[hz, ¢,], (11.1)

where hy, hsy, and h3 denote the intermediate hidden layers, x is the network input, y
is the output, and the functions fy[e, ¢,] perform the processing.

In a standard neural network, each layer consists of a linear transformation followed
by an activation function, and the parameters ¢, comprise the weights and biases of the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.1.1

11.1 Sequential processing 187

Figure 11.1 Sequential processing. Standard neural networks pass the output of
each layer directly into the next layer.

linear transformation. In a convolutional network, each layer consists of a set of convolu-
tions followed by an activation function, and the parameters comprise the convolutional
kernels and biases.

Since the processing is sequential, we can equivalently think of this network as a
series of nested functions:

y=1%4 [fs [fz [f1]x, ¢1]>¢2]»¢3}7¢4]~ (11.2)

Limitations of sequential processing

In principle, we can add as many layers as we want, and in the previous chapter, we saw
that adding more layers to a convolutional network does improve performance; the VGG
network (figure 10.17), which has eighteen layers, outperforms AlexNet (figure 10.16),
which has eight layers. However, image classification performance decreases again as
further layers are added (figure 11.2). This is surprising since models generally perform
better as more capacity is added (figure 8.10). Indeed, the decrease is present for both the
training set and the test set, which implies that the problem is training deeper networks
rather than the inability of deeper networks to generalize.

This phenomenon is not completely understood. One conjecture is that at initial-
ization, the loss gradients change unpredictably when we modify parameters in early
network layers. With appropriate initialization of the weights (see section 7.5), the gra-
dient of the loss with respect to these parameters will be reasonable (i.e., no exploding
or vanishing gradients). However, the derivative assumes an infinitesimal change in the
parameter, whereas optimization algorithms use a finite step size. Any reasonable choice
of step size may move to a place with a completely different and unrelated gradient; the
loss surface looks like an enormous range of tiny mountains rather than a single smooth
structure that is easy to descend. Consequently, the algorithm doesn’t make progress in
the way that it does when the loss function gradient changes more slowly.

This conjecture is supported by empirical observations of gradients in networks with
a single input and output. For a shallow network, the gradient of the output with re-
spect to the input changes slowly as we change the input (figure 11.3a). However, for a
deep network, a tiny change in the input results in a completely different gradient (fig-
ure 11.3b). This is captured by the autocorrelation function of the gradient (figure 11.3c).
Nearby gradients are correlated for shallow networks, but this correlation quickly drops
to zero for deep networks. This is termed the shattered gradients phenomenon.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 11.1
Shattered
gradients

Appendix B.2.1
Autocorrelation
function

188 11 Residual networks

a)200 b) 200

—
5 56 layer ct)
5 o

20 layer

2 €] 56 layer
] .£
= g
X =

X 20 layer
0.0 — 0.0 —

0.0 Tra|n|ng Step 60000 0.0 Tralnlng Step 60000

Figure 11.2 Decrease in performance when adding more convolutional layers. a) A
20-layer convolutional network outperforms a 56-layer neural network for image
classification on the test set of the CIFAR-10 dataset (Krizhevsky & Hinton,
2009). b) This is also true for the training set, which suggests that the problem
relates to training the original network rather than a failure to generalize to new
data. Adapted from He et al. (2016a).

[«8)
o —
lon
~—
0O
N—r

0 0.2 1.0
1 hidden layer 24 hidden layers 2 hidden layers

8 8 c
S = o
5 5| B
= 3 < 4 hidden layers
i o gl)
S < S 24 hidden layers
2 L S
3 3 2
—_ _
G] G) <
-1.0 - -0.2 T -1.0 T T

-2.0 0.0 2.0 -2.0 0.0 2.0 0.0 0.1 0.2

Input, Input, Az

Figure 11.3 Shattered gradients. a) Consider a shallow network with 200 hidden
units and Glorot initialization (He initialization without the factor of two) for
both the weights and biases. The gradient dy/90z of the scalar network output y
with respect to the scalar input x changes relatively slowly as we change the in-
put z. b) For a deep network with 24 layers and 200 hidden units per layer, this
gradient changes very quickly and unpredictably. ¢) The autocorrelation function
of the gradient shows that nearby gradients become unrelated (have autocorrela-
tion close to zero) for deep networks. This shattered gradients phenomenon may
explain why it is hard to train deep networks. Gradient descent algorithms rely
on the loss surface being relatively smooth, so the gradients should be related
before and after each update step. Adapted from Balduzzi et al. (2017).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.2

11.2 Residual connections and residual blocks 189

Shattered gradients presumably arise because changes in early network layers modify
the output in an increasingly complex way as the network becomes deeper. The derivative
of the output y with respect to the first layer f; of the network in equation 11.1 is:

oy _ O 0f; 06
of, 0f; 0f, Of;

When we change the parameters that determine f;, all of the derivatives in this sequence
can change since layers f, f3, and f; are themselves computed from f;. Consequently,
the updated gradient at each training example may be completely different, and the loss
function becomes badly behaved.!

(11.3)

Residual connections and residual blocks

Residual or skip connections are branches in the computational path, whereby the input
to each network layer fle] is added back to the output (figure 11.4a). By analogy to
equation 11.1, the residual network is defined as:

h, = x+fi[x, ¢4]
hy = h; +fihy, ¢,
hy = hy+f3]hy, @3]
y = hs+fi[hs 0], (11.4)

where the first term on the right-hand side of each line is the residual connection. Each
function fj learns an additive change to the current representation. It follows that their
outputs must be the same size as their inputs. Each additive combination of the input
and the processed output is known as a residual block or residual layer.

Once more, we can write this as a single function by substituting in the expressions
for the intermediate quantities hy:

y =x + fi[x] (11.5)
+ f2 [X+fl[XH

+ f5 {x+f1[x} + £ [XJrfl[X]H

+f {X—Fﬁ[x] + B x4 fu[x]] + £ [x + i [x] +f2[x+f1[x]]]],

where we have omitted the parameters ¢, for clarity. We can think of this equation as
“unraveling” the network (figure 11.4b). We see that the final network output is a sum
of the input and four smaller networks, corresponding to each line of the equation; one

Tn equations 11.3 and 11.6, we overload notation to define fj, as the output of the function fy[e].

Draft: please send errata to udlbookmail@gmail.com.

Problem 11.1

190 11 Residual networks

LG S e L

X

—Lf] n

b)

fQ XJrfl[X

[I
—Lf]
+.0d] | A
N

#
:

RN R

D]

s [x+f1[x] +h[x+fi[x] +£ {x—&—fl[x] +f2[x—|—f1[x]]H

Figure 11.4 Residual connections. a) The output of each function fj[x, ¢,] is
added back to its input, which is passed via a parallel computational path called
a residual or skip connection. Hence, the function computes an additive change
to the representation. b) Upon expanding (unraveling) the network equations, we
find that the output is the sum of the input plus four smaller networks (depicted
in white, orange, gray, and cyan, respectively, and corresponding to terms in
equation 11.5); we can think of this as an ensemble of networks. Moreover,
the output from the cyan network is itself a transformation fi[e, ¢p,] of another
ensemble, and so on. Alternatively, we can consider the network as a combination
of 16 different paths through the computational graph. One example is the dashed
path from input x to output y, which is the same in panels (a) and (b).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.2.1

11.2 Residual connections and residual blocks 191

a) JL Figure 11.5 Order of operations in resid-
ual blocks. a) The usual order of linear
X——>-—> D> transformation or convolution followed

by a ReLU nonlinearity means that each
residual block can only add non-negative
quantities. b) With the reverse order,

g JL
X _,-Lm_,-_,gg_, both positive and negative quantities can
be added. However, we must add a linear

C) transformation at the start of the net-
work in case the input is all negative. c)

y In practice, it’s common for a residual

o> block to contain several network layers.

interpretation is that residual connections turn the original network into an ensemble of
these smaller networks whose outputs are summed to compute the result.

A complementary way of thinking about this residual network is that it creates sixteen
paths of different lengths from input to output. For example, the first function fi[x]
occurs in eight of these sixteen paths, including as a direct additive term (i.e., a path
length of one), and the analogous derivative to equation 11.3 is:

dy of, ofs 0fs 0fy of, of,of, o0f,0fs5 0fy 0f3 0f,
Y 22 Z2
ofy of,

M K Oy (R0 | oty | ORO% 0% gy
of, * of, on, of, " of, o | of; 0f, | Of; 0 an)’(6)

where there is one term for each of the eight paths. The identity term on the right-
hand side shows that changes in the parameters ¢, in the first layer f1[x, ¢;] contribute
directly to changes in the network output y. They also contribute indirectly through
the other chains of derivatives of varying lengths. In general, gradients through shorter
paths will be better behaved. Since both the identity term and various short chains of
derivatives will contribute to the derivative for each layer, networks with residual links
suffer less from shattered gradients.

Order of operations in residual blocks

Until now, we have implied that the additive functions f[x] could be any valid network
layer (e.g., fully connected or convolutional). This is technically true, but the order of
operations in these functions is important. They must contain a nonlinear activation
function like a ReLLU, or the entire network will be linear. However, in a typical network
layer (figure 11.5a), the ReLU function is at the end, so the output is non-negative. If
we adopt this convention, then each residual block can only increase the input values.

Hence, it is typical to change the order of operations so that the activation function is
applied first, followed by the linear transformation (figure 11.5b). Sometimes there may
be several layers of processing within the residual block (figure 11.5¢), but these usually
terminate with a linear transformation. Finally, we note that when we start these blocks
with a ReLLU operation, they will do nothing if the initial network input is negative since
the ReLLU will clip the entire signal to zero. Hence, it’s typical to start the network with
a linear transformation rather than a residual block, as in figure 11.5b.

Draft: please send errata to udlbookmail@gmail.com.

Problem 11.2

Problem 11.3

Notebook 11.2
Residual
networks

11.2.2

11.3

Problem 11.4

11.4

192 11 Residual networks

Deeper networks with residual connections

Adding residual connections roughly doubles the depth of a network that can be practi-
cally trained before performance degrades. However, we would like to increase the depth
further. To understand why residual connections do not allow us to increase the depth
arbitrarily, we must consider how the variance of the activations changes during the
forward pass and how the gradient magnitudes change during the backward pass.

Exploding gradients in residual networks

In section 7.5, we saw that initializing the network parameters is critical. Without
careful initialization, the magnitudes of the intermediate values during the forward pass
of backpropagation can increase or decrease exponentially. Similarly, the gradients during
the backward pass can explode or vanish as we move backward through the network.

Hence, we initialize the network parameters so that the expected variance of the
activations (in the forward pass) and gradients (in the backward pass) remains the same
between layers. He initialization (section 7.5) achieves this for ReLU activations by
initializing the biases 3 to zero and choosing normally distributed weights €2 with mean
zero and variance 2/ Dy, where Dy, is the number of hidden units in the previous layer.

Now consider a residual network. We do not have to worry about the intermediate
values or gradients vanishing with network depth since there exists a path whereby
each layer directly contributes to the network output (equation 11.5 and figure 11.4b).
However, even if we use He initialization within the residual block, the values in the
forward pass increase exponentially as we move through the network.

To see why, consider that we add the result of the processing in the residual block back
to the input. Each branch has some (uncorrelated) variability. Hence, the overall variance
increases when we recombine them. With ReLU activations and He initialization, the
expected variance is unchanged by the processing in each block. Consequently, when
we recombine with the input, the variance doubles (figure 11.6a), growing exponentially
with the number of residual blocks. This limits the possible network depth before floating
point precision is exceeded in the forward pass. A similar argument applies to the
gradients in the backward pass of the backpropagation algorithm.

Hence, residual networks still suffer from unstable forward propagation and exploding
gradients even with He initialization. One approach that would stabilize the forward and
backward passes would be to use He initialization and then multiply the combined output
of each residual block by 1/v/2 to compensate for the doubling (figure 11.6b). However,
it is more usual to use batch normalization.

Batch normalization
Batch normalization or BatchNorm shifts and rescales each activation h so that its mean

and variance across the batch B become values that are learned during training. First,
the empirical mean m; and standard deviation s; are computed:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.4 Batch normalization 193

a) 1 2 | 4
4
b) 1 1 1
‘ L,] ,
i 1 1
V2 V2 V2
C) 1 2 3
x L1l 11 22._1»3 3 L fy s

Figure 11.6 Variance in residual networks. a) He initialization ensures that the
expected variance remains unchanged after a linear plus ReLLU layer fj,. Unfortu-
nately, in residual networks, the input of each block is added back to the output,
so the variance doubles at each layer (gray numbers indicate variance) and grows
exponentially. b) One approach would be to rescale the signal by 1/4/2 between
each residual block. ¢) A second method uses batch normalization (BN) as the
first step in the residual block and initializes the associated offset ¢ to zero and
scale v to one. This transforms the input to each layer to have unit variance, and
with He initialization, the output variance will also be one. Now the variance
increases linearly with the number of residual blocks. A side-effect is that, at
initialization, later network layers are dominated by the residual connection and
are hence close to computing the identity.

mp = %Zhi

ieB
s = =2 Z(hi —mp)?, (11.7)
el

where all quantities are scalars. Then we use these statistics to standardize the batch
activations to have mean zero and unit variance:

b —
hy « i Vi€ B, (11.8)
Sp + €

where € is a small number that prevents division by zero if h; is the same for every
member of the batch and s;, = 0.
Finally, the normalized variable is scaled by 7 and shifted by d:

hi < vhi + 6 Vi € B. (11.9)

Draft: please send errata to udlbookmail@gmail.com.

Appendix C.2.4
Standardization

Problem 11.5

Problem 11.6
Notebook 11.3
BatchNorm
11.4.1

194 11 Residual networks

After this operation, the activations have mean ¢ and standard deviation v across all
members of the batch. Both of these quantities are learned during training.

Batch normalization is applied independently to each hidden unit. In a standard
neural network with K layers, each containing D hidden units, there would be KD
learned offsets 6 and K D learned scales . In a convolutional network, the normalizing
statistics are computed over both the batch and the spatial position. If there were K
layers, each containing C' channels, there would be KC offsets and KC' scales. At test
time, we do not have a batch from which we can gather statistics. To resolve this, the
statistics my, and s, are calculated across the whole training dataset (rather than just a
batch) and frozen in the final network.

Costs and benefits of batch normalization

Batch normalization makes the network invariant to rescaling the weights and biases that
contribute to each activation; if these are doubled, then the activations also double, the
estimated standard deviation s; doubles, and the normalization in equation 11.8 com-
pensates for these changes. This happens separately for each hidden unit. Consequently,
there will be a large family of weights and biases that all produce the same effect. Batch
normalization also adds two parameters, v and 9, at every hidden unit, which makes the
model somewhat larger. Hence, it both creates redundancy in the weight parameters and
adds extra parameters to compensate for that redundancy. This is obviously inefficient,
but batch normalization also provides several benefits.

Stable forward propagation: If we initialize the offsets § to zero and the scales v to one,
then each output activation will have unit variance. In a regular network, this ensures
the variance is stable during forward propagation at initialization. In a residual network,
the variance must still increase as we add a new source of variation to the input at each
layer. However, it will increase linearly with each residual block; the k** layer adds one
unit of variance to the existing variance of k (figure 11.6¢).

At initialization, this has the side-effect that later layers make a smaller change to
the overall variation than earlier ones. The network is effectively less deep at the start of
training since later layers are close to computing the identity. As training proceeds, the
network can increase the scales v in later layers and can control its own effective depth.

Higher learning rates: FEmpirical studies and theory both show that batch normaliza-
tion makes the loss surface and its gradient change more smoothly (i.e., reduces shat-
tered gradients). This means we can use higher learning rates as the surface is more
predictable. We saw in section 9.2 that higher learning rates improve test performance.

Regularization: We also saw in chapter 9 that adding noise to the training process
can improve generalization. Batch normalization injects noise because the normaliza-
tion depends on the batch statistics. The activations for a given training example are
normalized by an amount that depends on the other members of the batch and will be
slightly different at each training iteration.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.5

11.5.1

11.5.2

11.5 Common residual architectures 195

Common residual architectures

Residual connections are now a standard part of deep learning pipelines. This section
reviews some well-known architectures that incorporate them.

ResNet

Residual blocks were first used in convolutional networks for image classification. The
resulting networks are known as residual networks, or ResNets for short. In ResNets, each
residual block contains a batch normalization operation, a ReLLU activation function, and
a convolutional layer. This is followed by the same sequence again before being added
back to the input (figure 11.7a). Trial and error have shown that this order of operations
works well for image classification.

For very deep networks, the number of parameters may become undesirably large.
Bottleneck residual blocks make more efficient use of parameters using three convolutions.
The first has a 1x1 kernel and reduces the number of channels. The second is a regular
3x3 kernel, and the third is another 1x1 kernel to increase the number of channels back
to the original amount (figure 11.7b). In this way, we can integrate information over a
3x3 pixel area using fewer parameters.

The ResNet-200 model (figure 11.8) contains 200 layers and was used for image clas-
sification on the ImageNet database (figure 10.15). The architecture resembles AlexNet
and VGG but uses bottleneck residual blocks instead of vanilla convolutional layers. As
with AlexNet and VGG, these are periodically interspersed with decreases in spatial
resolution and simultaneous increases in the number of channels. Here, the resolution is
decreased by downsampling using convolutions with stride two. The number of channels
is increased either by appending zeros to the representation or by using an extra 1x1
convolution. At the start of the network is a 7x7 convolutional layer, followed by a
downsampling operation. At the end, a fully connected layer maps the block to a vector
of length 1000. This is passed through a softmax layer to generate class probabilities.

The ResNet-200 model achieved a remarkable 4.8% error rate for the correct class
being in the top five and 20.1% for identifying the correct class correctly. This compared
favorably with AlexNet (16.4%, 38.1%) and VGG (6.8%, 23.7%) and was one of the
first networks to exceed human performance (5.1% for being in the top five guesses).
However, this model was conceived in 2016 and is far from state-of-the-art. At the time
of writing, the best-performing model on this task has a 9.0% error for identifying the
class correctly (see figure 10.21). This and all the other current top-performing models
for image classification are now based on transformers (see chapter 12).

DenseNet
Residual blocks receive the output from the previous layer, modify it by passing it

through some network layers, and add it back to the original input. An alternative is
to concatenate the modified and original signals. This increases the representation size

Draft: please send errata to udlbookmail@gmail.com.

Problem 11.7

Problem 11.8

196 11 Residual networks

) 4

:.—»[ReLUHConv 3 x3]—>.—>[ReLU]—>[Conv 3% 3]—%}’

b)
LB >{RelU->{ Conv 11 F>[BN}->[RelUl>{Conv 3x3)>B>RelUF>{ Conv 1x1 >~
Reduce Increase
channels by channels by
factor of four factor of four

Figure 11.7 ResNet blocks. a) A standard block in the ResNet architecture con-
tains a batch normalization operation, followed by an activation function, and
a 3x3 convolutional layer. Then, this sequence is repeated. b). A bottleneck
ResNet block still integrates information over a 3x3 region but uses fewer pa-
rameters. It contains three convolutions. The first 1x1 convolution reduces the
number of channels. The second 3x3 convolution is applied to the smaller rep-
resentation. A final 1x1 convolution increases the number of channels again so
that it can be added back to the input.

CRER:

o) N \Q@ \Q@
& (P X AP
Q)\"c Qﬂ}@ g,\oc @(’*’X
Y @ o
1
+ +
N 1
N
P —
36 blocks = I] |]
' total I | 4 PL 1| 1 4
o o
= RN,
& ©

<
e

Figure 11.8 ResNet-200 model. A standard 7x7 convolutional layer with stride
two is applied, followed by a MaxPool operation. A series of bottleneck residual
blocks follow (number in brackets is channels after first 1x1 convolution), with
periodic downsampling and accompanying increases in the number of channels.
The network concludes with average pooling across all spatial positions and a
fully connected layer that maps to pre-softmax activations.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.5.3

11.5 Common residual architectures 197

Concatenate to output Concatenate to output Concatenate to output

3 channels 32+3=35 channels 32+35=67 channels 32+67=99 channels

Figure 11.9 DenseNet. This architecture uses residual connections to concatenate
the outputs of earlier layers to later ones. Here, the three-channel input image is
processed to form a 32-channel representation. The input image is concatenated
to this to give a total of 35 channels. This combined representation is processed
to create another 32-channel representation, and both earlier representations are
concatenated to this to create a total of 67 channels and so on.

(in terms of channels for a convolutional network), but an optional subsequent linear
transformation can map back to the original size (a 1x1 convolution for a convolutional
network). This allows the model to add the representations together, take a weighted
sum, or combine them in a more complex way.

The DenseNet architecture uses concatenation so that the input to a layer comprises
the concatenated outputs from all previous layers (figure 11.9). These are processed to
create a new representation that is itself concatenated with the previous representation
and passed to the next layer. This concatenation means there is a direct contribution
from earlier layers to the output, so the loss surface behaves reasonably.

In practice, this can only be sustained for a few layers because the number of channels
(and hence the number of parameters required to process them) becomes increasingly
large. This problem can be alleviated by applying a 1x1 convolution to reduce the
number of channels before the next 3x3 convolution is applied. In a convolutional
network, the input is periodically downsampled. Concatenation across the downsampling
makes no sense since the representations have different sizes. Consequently, the chain of
concatenation is broken at this point, and a smaller representation starts a new chain.
In addition, another bottleneck 1x1 convolution can be applied when the downsampling
occurs to control the representation size further.

This network performs competitively with ResNet models on image classification (see
figure 10.21); indeed, it can perform better for a comparable parameter count. This is
presumably because it can reuse processing from earlier layers more flexibly.

U-Nets and hourglass networks
Section 10.5.3 described a semantic segmentation network that had an encoder-decoder or

hourglass structure. The encoder repeatedly downsamples the image until the receptive
fields are large and information is integrated from across the image. Then the decoder

Draft: please send errata to udlbookmail@gmail.com.

Problem 11.9

198 11 Residual networks

Crop and concatenate

Crop and concatenate

Crop and concatenate

Crop and concatenate

N
O
Ay

o
>

= = = =
R AU A WL T Cae

¢ o™ oo™ ol oo™

>
42 >
> Qoo ‘8?‘)&

3
. ot QOo\
N e o

AT ARRTEOT A

Q"‘\q

Figure 11.10 U-Net for segmenting HeLa cells. The U-Net has an encoder-decoder
structure, in which the representation is downsampled (orange blocks) and then
re-upsampled (blue blocks). The encoder uses regular convolutions, and the de-
coder uses transposed convolutions. Residual connections append the last repre-
sentation at each scale in the encoder to the first representation at the same scale
in the decoder (orange arrows). The original U-Net used “valid” convolutions, so
the size decreased slightly with each layer, even without downsampling. Hence,
the representations from the encoder were cropped (dashed squares) before ap-
pending to the decoder. Adapted from Ronneberger et al. (2015).

upsamples it back to the size of the original image. The final output is a probability
over possible object classes at each pixel. One drawback of this architecture is that
the low-resolution representation in the middle of the network must “remember” the
high-resolution details to make the final result accurate. This is unnecessary if residual
connections transfer the representations from the encoder to their partner in the decoder.

The U-Net (figure 11.10) is an encoder-decoder architecture where the earlier repre-
sentations are concatenated to the later ones. The original implementation used “valid”
convolutions, so the spatial size decreases by two pixels each time a 3x3 convolutional
layer is applied. This means that the upsampled version is smaller than its counterpart
in the encoder, which must be cropped before concatenation. Subsequent implementa-
tions have used zero padding, where this cropping is unnecessary. Note that the U-Net
is completely convolutional, so after training, it can be run on an image of any size.

The U-Net was intended for segmenting medical images (figure 11.11) but has found
many other uses in computer graphics and vision. Hourglass networks are similar but
apply further convolutional layers in the skip connections and add the result back to the
decoder rather than concatenating it. A series of these models form a stacked hourglass
network that alternates between considering the image at local and global levels. Such
networks are used for pose estimation (figure 11.12). The system is trained to predict one
“heatmap” for each joint, and the estimated position is the maximum of each heatmap.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

11.6

11.7

11.6 Why do nets with residual connections perform so well? 199

a b) c)

Figure 11.11 Segmentation using U-Net in 3D. a) Three slices through a 3D
volume of mouse cortex taken by scanning electron microscope. b) A single U-
Net is used to classify voxels as being inside or outside neurites. Connected
regions are identified with different colors. ¢) For a better result, an ensemble of
five U-Nets is trained, and a voxel is only classified as belonging to the cell if all
five networks agree. Adapted from Falk et al. (2019).

Why do nets with residual connections perform so well?

Residual networks allow much deeper networks to be trained; it’s possible to extend the
ResNet architecture to 1000 layers and still train effectively. The improvement in image
classification performance was initially attributed to the additional network depth, but
two pieces of evidence contradict this viewpoint.

First, shallower, wider residual networks sometimes outperform deeper, narrower ones
with a comparable parameter count. In other words, better performance can sometimes
be achieved with a network with fewer layers but more channels per layer. Second, there
is evidence that the gradients during training do not propagate effectively through very
long paths in the unraveled network (figure 11.4b). In effect, a very deep network may
act more like a combination of shallower networks.

The current view is that residual connections add some value of their own, as well
as allowing deeper networks to be trained. This perspective is supported by the fact
that the loss surfaces of residual networks around a minimum tend to be smoother and
more predictable than those for the same network when the skip connections are removed
(figure 11.13). This may make it easier to learn a good solution that generalizes well.

Summary

Increasing network depth indefinitely causes both training and test performance for image
classification to decrease. This may be because the gradient of the loss with respect to

Draft: please send errata to udlbookmail@gmail.com.

200 11 Residual networks

Input image Targets Output heatmaps Estimated pose

b)

Input image

Output
heatmaps
Hourglass block

Hourglass block Hourglass block

g

Hourglass block

’e

Figure 11.12 Stacked hourglass networks for pose estimation. a) The network
input is an image containing a person, and the output is a set of heatmaps, with
one heatmap for each joint. This is formulated as a regression problem where the
targets are heatmap images with small, highlighted regions at the ground-truth
joint positions. The peak of the estimated heatmap is used to establish each final
joint position. b) The architecture consists of initial convolutional and residual
layers followed by a series of hourglass blocks. ¢) Each hourglass block consists
of an encoder-decoder network similar to the U-Net except that the convolutions
use zero padding, some further processing is done in the residual links, and these
links add this processed representation rather than concatenate it. Each blue
cuboid is itself a bottleneck residual block (figure 11.7b). Adapted from Newell
et al. (2016).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 201

a) Residual b) No residual
connections connections

Figure 11.13 Visualizing neural network loss surfaces. Each plot shows the loss
surface in two random directions in parameter space around the minimum found
by SGD for an image classification task on the CIFAR-10 dataset. These direc-
tions are normalized to facilitate side-by-side comparison. a) Residual net with 56
layers. b) Results from the same network without skip connections. The surface
is smoother with the skip connections. This facilitates learning and makes the
final network performance more robust to minor errors in the parameters, so it
will likely generalize better. Adapted from Li et al. (2018b).

parameters early in the network changes quickly and unpredictably relative to the update
step size. Residual connections add the processed representation back to their own input.
Now each layer contributes directly to the output as well as indirectly, so propagating
gradients through many layers is not mandatory, and the loss surface is smoother.

Residual networks don’t suffer from vanishing gradients but introduce an exponential
increase in the variance of the activations during forward propagation and corresponding
problems with exploding gradients. This is usually handled by adding batch normaliza-
tion, which compensates for the empirical mean and variance of the batch and then
shifts and rescales using learned parameters. If these parameters are initialized judi-
ciously, very deep networks can be trained. There is evidence that both residual links
and batch normalization make the loss surface smoother, which permits larger learning
rates. Moreover, the variability in the batch statistics adds a source of regularization.

Residual blocks have been incorporated into convolutional networks. They allow
deeper networks to be trained with commensurate increases in image classification per-
formance. Variations of residual networks include the DenseNet architecture, which
concatenates outputs of all prior layers to feed into the current layer, and U-Nets, which
incorporate residual connections into encoder-decoder models.

Notes

Residual connections: Residual connections were introduced by He et al. (2016a), who built
a network with 152 layers, which was eight times larger than VGG (figure 10.17), and achieved
state-of-the-art performance on the ImageNet classification task. FEach residual block consisted

Draft: please send errata to udlbookmail@gmail.com.

202 11 Residual networks

of a convolutional layer followed by batch normalization, a ReLU activation, a second convolu-
tional layer, and second batch normalization. A second ReLU function was applied after this
block was added back to the main representation. This architecture was termed ResNet vl.
He et al. (2016Db) investigated different variations of residual architectures, in which either (i)
processing could also be applied along the skip connection or (ii) after the two branches had
recombined. They concluded neither was necessary, leading to the architecture in figure 11.7,
which is sometimes termed a pre-activation residual block and is the backbone of ResNet v2.
They trained a network with 200 layers that improved further on the ImageNet classification
task (see figure 11.8). Since this time, new methods for regularization, optimization, and data
augmentation have been developed, and Wightman et al. (2021) exploit these to present a more
modern training pipeline for the ResNet architecture.

Why residual connections help: Residual networks certainly allow deeper networks to be
trained. Presumably, this is related to reducing shattered gradients (Balduzzi et al., 2017) at
the start of training and the smoother loss surface near the minima as depicted in figure 11.13
(Li et al., 2018b). Residual connections alone (i.e., without batch normalization) increase the
trainable depth of a network by roughly a factor of two (Sankararaman et al., 2020). With batch
normalization, very deep networks can be trained, but it is unclear that depth is critical for
performance. Zagoruyko & Komodakis (2016) showed that wide residual networks with only 16
layers outperformed all residual networks of the time for image classification. Orhan & Pitkow
(2017) propose a different explanation for why residual connections improve learning in terms
of eliminating singularities (places on the loss surface where the Hessian is degenerate).

Related architectures: Residual connections are a special case of highway networks (Srivas-
tava et al., 2015) which also split the computation into two branches and additively recombine.
Highway networks use a gating function that weights the inputs to the two branches in a way
that depends on the data itself, whereas residual networks send the data down both branches in
a straightforward manner. Xie et al. (2017) introduced the ResNeXt architecture, which places
a residual connection around multiple parallel convolutional branches.

Residual networks as ensembles: Veit et al. (2016) characterized residual networks as en-
sembles of shorter networks and depicted the “unraveled network” interpretation (figure 11.4b).
They provide evidence that this interpretation is valid by showing that deleting layers in a
trained network (and hence a subset of paths) only has a modest effect on performance. Con-
versely, removing a layer in a purely sequential network like VGG is catastrophic. They also
looked at the gradient magnitudes along paths of different lengths and showed that the gradient
vanishes in longer paths. In a residual network consisting of 54 blocks, almost all of the gradient
updates during training were from paths of length 5 to 17 blocks long, even though these only
constitute 0.45% of the total paths. It seems that adding more blocks effectively adds more
parallel shorter paths rather than creating a network that is truly deeper.

Regularization for residual networks: L2 regularization of the weights has a fundamentally
different effect in vanilla networks and residual networks without BatchNorm. In the former, it
encourages the output of the layer to be a constant function determined by the biases. In the
latter, it encourages the residual block to compute the identity plus a constant determined by
the biases.

Several regularization methods have been developed that are targeted specifically at residual
architectures. ResDrop (Yamada et al., 2016), stochastic depth (Huang et al., 2016), and
RandomDrop (Yamada et al., 2019) all regularize residual networks by randomly dropping
residual blocks during the training process. In the latter case, the propensity for dropping a block
is determined by a Bernoulli variable, whose parameter is linearly decreased during training. At
test time, the residual blocks are added back in with their expected probability. These methods
are effectively versions of dropout, in which all the hidden units in a block are simultaneously

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 203

dropped in concert. In the multiple paths view of residual networks (figure 11.4b), they simply
remove some of the paths at each training step. Wu et al. (2018b) developed BlockDrop, which
analyzes an existing network and decides which residual blocks to use at runtime with the goal
of improving the efficiency of inference.

Other regularization methods have been developed for networks with multiple paths inside
the residual block. Shake-shake (Gastaldi, 2017a,b) randomly re-weights the paths during the
forward and backward passes. In the forward pass, this can be viewed as synthesizing random
data, and in the backward pass, as injecting another form of noise into the training method.
ShakeDrop (Yamada et al., 2019) draws a Bernoulli variable that decides whether each block
will be subject to Shake-Shake or behave like a standard residual unit on this training step.

Batch normalization: Batch normalization was introduced by Ioffe & Szegedy (2015) outside
of the context of residual networks. They showed empirically that it allowed higher learning
rates, increased convergence speed, and made sigmoid activation functions more practical (since
the distribution of outputs is controlled, so examples are less likely to fall in the saturated
extremes of the sigmoid). Balduzzi et al. (2017) investigated the activation of hidden units in
later layers of deep networks with ReLLU functions at initialization. They showed that many such
hidden units were always active or always inactive regardless of the input but that BatchNorm
reduced this tendency.

Although batch normalization helps stabilize the forward propagation of signals through a
network, Yang et al. (2019) showed that it causes gradient explosion in ReLU networks without
skip connections, with each layer increasing the magnitude of the gradients by /7 /(7w — 1) ~
1.21. This argument is summarized by Luther (2020). Since a residual network can be seen
as a combination of paths of different lengths (figure 11.4), this effect must also be present in
residual networks. Presumably, however, the benefit of removing the 2% increases in magnitude
in the forward pass of a network with K layers outweighs the harm done by increasing the
gradients by 1.21% in the backward pass, so overall BatchNorm makes training more stable.

Variations of batch normalization: Several variants of BatchNorm have been proposed
(figure 11.14). BatchNorm normalizes each channel separately based on statistics gathered
across the batch. Ghost batch normalization or GhostNorm (Hoffer et al., 2017) uses only part
of the batch to compute the normalization statistics, which makes them noisier and increases
the amount of regularization when the batch size is very large (figure 11.14b).

When the batch size is very small or the fluctuations within a batch are very large (as is often the
case in natural language processing), the statistics in BatchNorm may become unreliable. Toffe
(2017) proposed batch renormalization, which keeps a running average of the batch statistics
and modifies the normalization of any batch to ensure that it is more representative. Another
problem is that batch normalization is unsuitable for use in recurrent neural networks (networks
for processing sequences, in which the previous output is fed back as an additional input as we
move through the sequence (see figure 12.19). Here, the statistics must be stored at each step in
the sequence, and it’s unclear what to do if a test sequence is longer than the training sequences.
A third problem is that batch normalization needs access to the whole batch. However, this
may not be easily available when training is distributed across several machines.

Layer normalization or LayerNorm (Ba et al., 2016) avoids using batch statistics by normalizing
each data example separately, using statistics gathered across the channels and spatial position
(figure 11.14c). However, there is still a separate learned scale v and offset J per channel.
Group normalization or GroupNorm (Wu & He, 2018) is similar to LayerNorm but divides the
channels into groups and computes the statistics for each group separately across the within-
group channels and the spatial positions (figure 11.14d). Again, there are still separate scale and
offset parameters per channel. Instance normalization or InstanceNorm (Ulyanov et al., 2016)
takes this to the extreme where the number of groups is the same as the number of channels,
so each channel is normalized separately (figure 11.14e), using statistics gathered across spatial

Draft: please send errata to udlbookmail@gmail.com.

204 11 Residual networks

o c
o . o
= E =
0 0
o o
a a

BatchNorm GhostNorm LayerNorm GroupNorm InstanceNorm

Figure 11.14 Normalization schemes. BatchNorm modifies each channel sepa-
rately but adjusts each batch member in the same way based on statistics gath-
ered across the batch and spatial position. Ghost BatchNorm computes these
statistics from only part of the batch to make them more variable. LayerNorm
computes statistics for each batch member separately, based on statistics gath-
ered across the channels and spatial position. It retains a separate learned scaling
factor for each channel. GroupNorm normalizes within each group of channels
and also retains a separate scale and offset parameter for each channel. Instan-
ceNorm normalizes within each channel separately, computing the statistics only
across spatial position. Adapted from Wu & He (2018).

position alone. Salimans & Kingma (2016) investigated normalizing the network weights rather
than the activations, but this has been less empirically successful. Teye et al. (2018) introduced
Monte Carlo batch normalization, which can provide meaningful estimates of uncertainty in the
predictions of neural networks. A recent comparison of the properties of different normalization
schemes can be found in Lubana et al. (2021).

Why BatchNorm helps: BatchNorm helps control the initial gradients in a residual network
(figure 11.6c). However, the mechanism by which BatchNorm improves performance is not
well understood. The stated goal of Ioffe & Szegedy (2015) was to reduce problems caused
by internal covariate shift, which is the change in the distribution of inputs to a layer caused
by updating preceding layers during the backpropagation update. However, Santurkar et al.
(2018) provided evidence against this view by artificially inducing covariate shift and showing
that networks with and without BatchNorm performed equally well.

Motivated by this, they searched for another explanation for why BatchNorm should improve
performance. They showed empirically for the VGG network that adding batch normalization
decreases the variation in both the loss and its gradient as we move in the gradient direction.
In other words, the loss surface is both smoother and changes more slowly, which is why larger
learning rates are possible. They also provide theoretical proofs for both these phenomena
and show that for any parameter initialization, the distance to the nearest optimum is less for
networks with batch normalization. Bjorck et al. (2018) also argue that BatchNorm improves
the properties of the loss landscape and allows larger learning rates.

Other explanations of why BatchNorm improves performance include decreasing the importance
of tuning the learning rate (Ioffe & Szegedy, 2015; Arora et al., 2018). Indeed Li & Arora
(2019) show that using an exponentially increasing learning rate schedule is possible with batch
normalization. Ultimately, this is because batch normalization makes the network invariant to
the scales of the weight matrices (see Huszar, 2019, for an intuitive visualization).

Hoffer et al. (2017) identified that BatchNorm has a regularizing effect due to statistical fluc-

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Notes 205

tuations from the random composition of the batch. They proposed using a ghost batch size,
in which the mean and standard deviation statistics are computed from a subset of the batch.
Large batches can now be used without losing the regularizing effect of the extra noise in smaller
batch sizes. Luo et al. (2018) investigate the regularization effects of batch normalization.

Alternatives to batch normalization: Although BatchNorm is widely used, it is not strictly
necessary to train deep residual nets; there are other ways of making the loss surface tractable.
Balduzzi et al. (2017) proposed the rescaling by 1/1/2 in figure 11.6b; they argued that it
prevents gradient explosion but does not resolve the problem of shattered gradients.

Other work has investigated rescaling the function’s output in the residual block before adding
it back to the input. For example, De & Smith (2020) introduce SkipInit, in which a learnable
scalar multiplier is placed at the end of each residual branch. This helps if this multiplier is
initialized to less than /1/K, where K is the number of residual blocks. In practice, they
suggest initializing this to zero. Similarly, Hayou et al. (2021) introduce Stable ResNet, which
rescales the output of the function in the k" residual block (before addition to the main branch)
by a constant A\x. They prove that in the limit of infinite width, the expected gradient norm of
the weights in the first layer is lower bounded by the sum of squares of the scalings ;. They
investigate setting these to a constant /1/K, where K is the number of residual blocks and
show that it is possible to train networks with up to 1000 blocks.

Zhang et al. (2019a) introduce FizUp, in which every layer is initialized using He normalization,
but the last linear/convolutional layer of every residual block is set to zero. Now the initial
forward pass is stable (since each residual block contributes nothing), and the gradients do not
explode in the backward pass (for the same reason). They also rescale the branches so that the
magnitude of the total expected change in the parameters is constant regardless of the number
of residual blocks. These methods allow training of deep residual networks but don’t usually
achieve the same test performance as when using BatchNorm. This is probably because they
do not benefit from the regularization induced by the noisy batch statistics. De & Smith (2020)
modify their method to induce regularization via dropout, which helps close this gap.

DenseNet and U-Net: DenseNet was first introduced by Huang et al. (2017b), U-Net was
developed by Ronneberger et al. (2015), and stacked hourglass networks by Newell et al. (2016).
Of these architectures, U-Net has been the most extensively adapted. Cigek et al. (2016) in-
troduced 3D U-Net, and Milletari et al. (2016) introduced V-Net, both of which extend U-Net
to process 3D data. Zhou et al. (2018) combine the ideas of DenseNet and U-Net in an archi-
tecture that downsamples and re-upsamples the image but also repeatedly uses intermediate
representations. U-Nets are commonly used in medical image segmentation (see Siddique et al.,
2021, for a review). However, they have been applied to other areas, including depth estimation
(Garg et al., 2016), semantic segmentation (Iglovikov & Shvets, 2018), inpainting (Zeng et al.,
2019), pansharpening (Yao et al., 2018), and image-to-image translation (Isola et al., 2017).
U-Nets are also a key component in diffusion models (chapter 18).

Problems

Problem 11.1 Derive equation 11.5 from the network definition in equation 11.4.

Problem 11.2 Unraveling the four-block network in figure 11.4a produces one path of length
zero, four paths of length one, six paths of length two, four paths of length three, and one path
of length four. How many paths of each length would there be if with (i) three residual blocks
and (ii) five residual blocks? Deduce the rule for K residual blocks.

Problem 11.3 Show that the derivative of the network in equation 11.5 with respect to the first
layer fi[x] is given by equation 11.6.

Draft: please send errata to udlbookmail@gmail.com.

206 11 Residual networks

@ ()?]-(#)-[Ele F|¢m}»@»

Figure 11.15 Computational graph for batch normalization (see problem 11.5).

Problem 11.4" Explain why the values in the two branches of the residual blocks in figure 11.6a
are uncorrelated. Show that the variance of the sum of uncorrelated variables is the sum of
their individual variances.

Problem 11.5" The forward pass for batch normalization given a batch of scalar values {z; }/_;
consists of the following operations (figure 11.15):

J1 =E[z] fs=+Vfit+e

fai=xi— f =1
Lo fo=1/15 (11.10)
Jai = fai Jri = fai X fo
fa =E[fs] 2y = fri Xy + 6,
where E[z;] = 3, z;. Write Python code to implement the forward pass. Now derive the

algorithm for the backward pass. Work backward through the computational graph computing
the derivatives to generate a set of operations that computes 9z;/9z; for every element in the
batch. Write Python code to implement the backward pass.

Problem 11.6 Consider a fully connected neural network with one input, one output, and ten
hidden layers, each of which contains twenty hidden units. How many parameters does this
network have? How many parameters will it have if we place a batch normalization operation
between each linear transformation and ReLLU?

Problem 11.7* Consider applying an L2 regularization penalty to the weights in the convolu-
tional layers in figure 11.7a, but not to the scaling parameters of the subsequent BatchNorm
layers. What do you expect will happen as training proceeds?

Problem 11.8 Consider a convolutional residual block that contains a batch normalization oper-
ation, followed by a ReLU activation function, and then a 3x3 convolutional layer. If the input
and output both have 512 channels, how many parameters are needed to define this block? Now
consider a bottleneck residual block that contains three batch normalization/ReLU/convolution
sequences. The first uses a 1x1 convolution to reduce the number of channels from 512 to 128.
The second uses a 3x3 convolution with the same number of input and output channels. The
third uses a 1x1 convolution to increase the number of channels from 128 to 512 (see fig-
ure 11.7b). How many parameters are needed to define this block?

Problem 11.9 The U-Net is completely convolutional and can be run with any sized image after
training. Why do we not train with a collection of arbitrarily-sized images?

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.1

Chapter 12

Transformers

Chapter 10 introduced convolutional networks, which are specialized for processing data
that lie on a regular grid. They are particularly suited to processing images, which have
a very large number of input variables, precluding the use of fully connected networks.
Each layer of a convolutional network employs parameter sharing so that local image
patches are processed similarly at every position in the image.

This chapter introduces transformers. These were initially targeted at natural lan-
guage processing (NLP) problems, where the network input is a series of high-dimensional
embeddings representing words or word fragments. Language datasets share some of the
characteristics of image data. The number of input variables can be very large, and the
statistics are similar at every position; it’s not sensible to re-learn the meaning of the
word dog at every possible position in a body of text. However, language datasets have
the complication that text sequences vary in length, and unlike images, there is no easy
way to resize them.

Processing text data

To motivate the transformer, consider the following passage:

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian
food. In the end, they just gave me two slices of bread. Their ambiance was just as good
as the food and service.

The goal is to design a network to process this text into a representation suitable for
downstream tasks. For example, it might be used to classify the review as positive or
negative or to answer questions such as “Does the restaurant serve steak?”.

We can make three immediate observations. First, the encoded input can be surpris-
ingly large. In this case, each of the 37 words might be represented by an embedding
vector of length 1024, so the encoded input would be of length 37 x 1024 = 37888 even
for this small passage. A more realistically sized body of text might have hundreds or
even thousands of words, so fully connected neural networks are impractical.

Draft: please send errata to udlbookmail@gmail.com.

12.2

208 12 Transformers

Second, one of the defining characteristics of NLP problems is that each input (one or
more sentences) is of a different length; hence, it’s not even obvious how to apply a fully
connected network. These observations suggest that the network should share parameters
across words at different input positions, similarly to how convolutional networks share
parameters across different image positions.

Third, language is ambiguous; it is unclear from the syntax alone that the pronoun it
refers to the restaurant and not to the ham sandwich. To understand the text, the word
it should somehow be connected to the word restaurant. In the parlance of transformers,
the former word should pay attention to the latter. This implies that there must be
connections between the words and that the strength of these connections will depend
on the words themselves. Moreover, these connections need to extend across large text
spans. For example, the word their in the last sentence also refers to the restaurant.

Dot-product self-attention

The previous section argued that a model for processing text will (i) use parameter
sharing to cope with long input passages of differing lengths and (ii) contain connections
between word representations that depend on the words themselves. The transformer
acquires both properties by using dot-product self-attention.

A standard neural network layer f[x], takes a D x 1 input x and applies a linear
transformation followed by an activation function like a ReLU, so:

flx] = ReLU[8 + Qx], (12.1)

where B contains the biases, and €2 contains the weights.

A self-attention block safe] takes N inputs x1,...,xy, each of dimension D x 1, and
returns N output vectors of the same size. In the context of NLP, each input represents
a word or word fragment. First, a set of values are computed for each input:

Vi = B, + QuXim, (12.2)
where 3, and €2, represent biases and weights, respectively.
Then the n'* output sa,[xi,...,xy] is a weighted sum of all the values vy,...,vy:
N
sa,[X1,...,XN] = Z a[Xm, Xn |V (12.3)
m=1

The scalar weight a[x,,, X,] is the attention that the n'" output pays to input x,,,. The N
weights a[e, x,,] are non-negative and sum to one. Hence, self-attention can be thought
of as routing the values in different proportions to create each output (figure 12.1).

The following sections examine dot-product self-attention in more detail. First, we
consider the computation of the values and their subsequent weighting (equation 12.3).
Then we describe how to compute the attention weights a[x;,,x,] themselves.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.2.1

12.2.2

12.2 Dot-product self-attention 209

saj [Xe

sa x|

Inputs Values Outputs Inputs Values Outputs Outputs

Figure 12.1 Self-attention as routing. The self-attention mechanism takes N
inputs x1,...,xy € RP (here N =3 and D =4) and processes each separately
to compute N value vectors. The n'™ output sa,[xi,...xn] (written as sa,,[X]
for short) is then computed as a weighted sum of the NV value vectors, where the
weights are positive and sum to one. a) Output sa;[X.] is computed as a[x1,x1] =
0.1 times the first value vector, a[x2,x1] = 0.3 times the second value vector,
and a[x3,x1] = 0.6 times the third value vector. b) Output saz[x.] is computed
in the same way, but this time with weights of 0.5, 0.2, and 0.3. ¢) The weighting
for output sas[xe] is different again. Each output can hence be thought of as a
different routing of the N values.

Computing and weighting values

Equation 12.2 shows that the same weights £2,, € RP*P and biases 3, € R” are applied
to each input x,, € RP. This computation scales linearly with the sequence length N,
so it requires fewer parameters than a fully connected network relating all DN inputs
to all DN outputs. The value computation can be viewed as a sparse matrix operation
with shared parameters (figure 12.2b).

The attention weights a[X,,,X,] combine the values from different inputs. They
are also sparse since there is only one weight for each ordered pair of inputs (X, X,),
regardless of the size of these inputs (figure 12.2¢). It follows that the number of attention
weights has a quadratic dependence on the sequence length IV, but is independent of the
length D of each input x,,.

Computing attention weights

In the previous section, we saw that the outputs result from two chained linear transfor-
mations; the value vectors 3, + €2,x,, are computed independently for each input x,,,
and these vectors are combined linearly by the attention weights a[x;,,x,]. However, the
overall self-attention computation is nonlinear. As we’ll see shortly, the attention weights
are themselves nonlinear functions of the input. This is an example of a hypernetwork,
where one network branch computes the weights of another.

Draft: please send errata to udlbookmail@gmail.com.

Problem 12.1

Appendix B.3.4
Dot product

210 12 Transformers

a) Q, a[Xm, Xy] b) Inputs C) Outputs
1 2 3 1 2 3
oy "n
1
i jiL.*
| I O | 1
X X wv
SR &, e g, m_ H_H
v aas st Wy Ey W
A [Tl O O ||
K/ N/ .
Y [n | u
5 o | (e EEw
B " " s
———
Q, axs, x1]

Value weights Attention weights

Figure 12.2 Self-attention for N = 3 inputs x,, each with dimension D = 4.
a) Each input x, is operated on independently by the same weights Q, (same
color equals same weight) and biases 3, (not shown) to form the values 8, +
Q,%x,. Each output is a linear combination of the values, with a shared attention
weight a[X,,,Xn| defining the contribution of the m'" value to the n'" output.
b) Matrix showing block sparsity of linear transformation €2, between inputs
and values. ¢) Matrix showing sparsity of attention weights relating values and
outputs.

To compute the attention, we apply two more linear transformations to the inputs:

qn = ﬁq"‘ﬂqxn
ky = B+ Uuxpm, (12.4)

where {q,,} and {k,,} are termed queries and keys, respectively. Then we compute dot
products between the queries and keys and pass the results through a softmax function:

alXm,X,] = softmax,, [k.an]
_ exp [k, qn] (125)
Zanle exp [k%/q"]

so for each x,,, they are positive and sum to one (figure 12.3). For obvious reasons, this
is known as dot-product self-attention.

The names “queries” and “keys” were inherited from the field of information retrieval
and have the following interpretation: the dot product operation returns a measure of
similarity between its inputs, so the weights a[Xs, X,] depend on the relative similarities
between the n'" query and all of the keys. The softmax function means that the key
vectors “compete” with one another to contribute to the final result. The queries and
keys must have the same dimensions. However, these can differ from the dimension of

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.2.3

12.2 Dot-product self-attention 211

a)

a[x1, x3]
b) C) Outputs
O
- O
N kias a[x1, x3] ..
1
x4 o o L E H
softmax o B
) S gy A R
85— EEn aEn = | O [|
Inputs Dot Attentions I O O
products O || ||
O O O
O O ||
Attention weights

Figure 12.3 Computing attention weights. a) Query vectors q, = B, + Q¢x»
and key vectors k, = 3, + Qix, are computed for each input x,. b) The dot
products between each query and the three keys are passed through a softmax
function to form non-negative attentions that sum to one. c¢) These route the
value vectors (figure 12.1) via the sparse matrix from figure 12.2c.

the values, which is usually the same size as the input, so the representation doesn’t
change size.

Self-attention summary

The n'" output is a weighted sum of the same linear transformation ve = 3, + Q,%,
applied to all of the inputs, where these attention weights are positive and sum to one.
The weights depend on a measure of similarity between input x,, and the other inputs.
There is no activation function, but the mechanism is nonlinear due to the dot-product
and a softmax operation used to compute the attention weights.

Note that this mechanism fulfills the initial requirements. First, there is a single
shared set of parameters ¢ = {B,,,,8,, 2, By, U }. This is independent of the

Draft: please send errata to udlbookmail@gmail.com.

Problem 12.2

212 12 Transformers

f 1 Self—attentioh

Q:,@qlTJrﬂqX N

Attention,
Softmax [K” Q]

Input, Keys, Output,
X K=8,17 + 9, X V - Softmax [KTQ]

Values,

_ V=B,1T+0,X Vi

Figure 12.4 Self-attention in matrix form. Self-attention can be implemented
efficiently if we store the N input vectors x,, in the columns of the Dx/N matrix X.
The input X is operated on separately by the query matrix Q, key matrix K, and
value matrix V. The dot products are then computed using matrix multiplication,
and a softmax operation is applied independently to each column of the resulting
matrix to calculate the attentions. Finally, the values are post-multiplied by the
attentions to create an output of the same size as the input.

number of inputs N, so the network can be applied to different sequence lengths. Second,
there are connections between the inputs (words), and the strength of these connections
depends on the inputs themselves via the attention weights.

12.2.4 Matrix form

The above computation can be written in a compact form if the N inputs x,, form the
columns of the D x N matrix X. The values, queries, and keys can be computed as:

ViX] = 8,17+0,X
QX] = B1T+0.X
KX] = 8,17 + QX (12.6)

where 1 is an N x 1 vector containing ones. The self-attention computation is then:

Sa[X] = V[X] - Softmax [K[X]TQ[X}], (12.7)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.3

12.3.1

12.3 Extensions to dot-product self-attention 213

Figure 12.5 Positional encodings. The
self-attention architecture is equivariant
to permutations of the inputs. To en-
sure that inputs at different positions are
treated differently, a positional encoding
matrix IT can be added to the data ma-
trix. Each column is different, so the po-
sitions can be distinguished. Here, the
position encodings use a predefined pro-
cedural sinusoidal pattern (which can be
extended to larger values of N if neces-
sary). However, in other cases, they are
learned.

Dimension, d
[e)}
FN

128
0 Input, n 80

where the function Softmax[e| takes a matrix and performs the softmax operation
independently on each of its columns (figure 12.4). In this formulation, we have explicitly
included the dependence of the values, queries, and keys on the input X to emphasize
that self-attention computes a kind of triple product based on the inputs. However, from
now on, we will drop this dependence and just write:

Sa[X] = V - Softmax[K” Q. (12.8)

Extensions to dot-product self-attention

In the previous section, we described self-attention. Here, we introduce three extensions
that are almost always used in practice.

Positional encoding

Observant readers will have noticed that the self-attention mechanism discards important
information: the computation is the same regardless of the order of the inputs x,,.
More precisely, it is equivariant with respect to input permutations. However, order is
important when the inputs correspond to the words in a sentence. The sentence The
woman ate the raccoon has a different meaning than The raccoon ate the woman. There
are two main approaches to incorporating position information.

Absolute positional encodings: A matrix IT is added to the input X that encodes
positional information (figure 12.5). Each column of II is unique and hence contains
information about the absolute position in the input sequence. This matrix can be
chosen by hand or learned. It may be added to the network inputs or at every network
layer. Sometimes it is added to X in the computation of the queries and keys but not
to the values.

Draft: please send errata to udlbookmail@gmail.com.

Notebook 12.1
Self-attention

Problem 12.3

12.3.2

Problem 12.4

12.3.3

Problem 12.5

214 12 Transformers

Relative positional encodings: The input to a self-attention mechanism may be an
entire sentence, many sentences, or just a fragment of a sentence, and the absolute
position of a word is much less important than the relative position between two inputs.
Of course, this can be recovered if the system knows the absolute position of both,
but relative positional encodings encode this information directly. Each element of the
attention matrix corresponds to a particular offset between query position a and key
position b. Relative positional encodings learn a parameter m,; for each offset and use
this to modify the attention matrix by adding these values, multiplying by them, or
using them to alter the attention matrix in some other way.

Scaled dot product self-attention

The dot products in the attention computation can have large magnitudes and move
the arguments to the softmax function into a region where the largest value completely
dominates. Small changes to the inputs to the softmax function now have little effect on
the output (i.e., the gradients are very small), making the model difficult to train. To
prevent this, the dot products are scaled by the square root of the dimension D, of the
queries and keys (i.e., the number of rows in ©, and €y, which must be the same):

(12.9)

Sa[X] =V - Softmax [KTQ] .

VD,

This is known as scaled dot product self-attention.

Multiple heads

Multiple self-attention mechanisms are usually applied in parallel, and this is known as
multi-head self-attention. Now H different sets of values, keys, and queries are computed:

Vi = BulT+QuX
Q. = BulT+9u4X
K, = Bul1T +ouX. (12.10)

The A" self-attention mechanism or head can be written as:

(12.11)

T
Sa,[X] = V}, - Softmax [Kh Qh] ,

VD,

where we have different parameters {8,,,, Qun}, {Byn, Qqn}, and {By,, Qpn} for each
head. Typically, if the dimension of the inputs x,,, is D and there are H heads, the values,
queries, and keys will all be of size D/H, as this allows for an efficient implementation.
The outputs of these self-attention mechanisms are vertically concatenated, and another
linear transform €, is applied to combine them (figure 12.6):

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.4 Transformers 215

(i Head1\
o
Queries —‘ &
N R
L J Attention &
i -
Keys Head 1 Output,
Sa; [X]
N
k Values j
D — D
Input, X Concatenate
and transform, .
Q. [sa1X]", 52 [X]"

Figure 12.6 Multi-head self-attention. Self-attention occurs in parallel across
multiple “heads.” Each has its own queries, keys, and values. Here two heads are
depicted, in the cyan and orange boxes, respectively. The outputs are vertically
concatenated, and another linear transformation €2, is used to recombine them.

T
MhSa[X] = Q. Sal[X]T,SaQ[X]T,...,SaH[X]T} . (12.12)
Notebook 12.2
Multiple heads seem to be necessary to make the transformer work well. It has been Multi-head
speculated that they make the self-attention network more robust to bad initializations. self-attention

12.4 Transformers

Self-attention is just one part of a larger transformer mechanism. This consists of a
multi-head self-attention unit (which allows the word representations to interact with

Draft: please send errata to udlbookmail@gmail.com.

12.5

216 12 Transformers

Transformer layer

Residual connection Residual connection
N
D L
Input Multi-head LayerNorm Parallel neural LayerNorm Output
self-attention networks (x V)

Figure 12.7 The transformer. The input consists of a D X N matrix containing
the D-dimensional word embeddings for each of the N input tokens. The output
is a matrix of the same size. The transformer consists of a series of operations.
First, there is a multi-head attention block, allowing the word embeddings to
interact with one another. This forms the processing of a residual block, so the
inputs are added back to the output. Second, a LayerNorm operation is applied.
Third, there is a second residual layer where the same fully connected neural
network is applied separately to each of the N word representations (columns).
Finally, LayerNorm is applied again.

each other) followed by a fully connected network mlp[xe| (that operates separately
on each word). Both units are residual networks (i.e., their output is added back to
the original input). In addition, it is typical to add a LayerNorm operation after both
the self-attention and fully connected networks. This is similar to BatchNorm but uses
statistics across the tokens within a single input sequence to perform the normalization
(section 11.4 and figure 11.14). The complete layer can be described by the following
series of operations (figure 12.7):

X <+ X+ MhSa[X]

X <« LayerNorm[X]

Xp 4 X, + mlp[x,] Vne{l,...,N}

X <« LayerNorm|X], (12.13)

where the column vectors x,, are separately taken from the full data matrix X. In a real
network, the data passes through a series of these transformers.

Transformers for natural language processing
The previous section described the transformer. This section describes how it is used in

natural language processing (NLP) tasks. A typical NLP pipeline starts with a tokenizer
that splits the text into words or word fragments. Then each of these tokens is mapped

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.5 Transformers for natural language processing 217

a) a_sailor_went_to_sea_sea_sea_ f) 30
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea _sea_

|_|e \S\a\t\O\h\'\U\b\d\W\C\f\\ [n|p]r]
[33]28]1s5]2[T]8lefe[4[3[3[3[2[1[1[1 1[1]T]
b) a_sailor_went_to_sea_sea_sea_

to_see_what_he_could_sce_see_see_
but_all_that_he_could_sece_see_see_

was_the_bottom_of_the_deep_blue_sca_sea_sea_

tokens

| e|se|alt]o]h|!]ulb|d|w|c|s|f|i|m|n|p|r
[z 12[nf8]e64[3[3[3[2[2[1[T] T]T]T]1

Iterations 20
C) a_sailor_went_to_sea_sea_sea_

to_see_what_he_could_see_see_see_

but_all_that_he_could_see_see_see_

was_the_bottom_of_the_deep_blue_sea_sea_sea_

|_|se|ale [t]o]h]l|ulbld|elw|c|s|f|i|m|n|p|r]|
[21]13]12]12[n[8]6]6]4]3[3[3]3]2[2[1]1] 1 |1]1]1]

d) |see_|sea_|e|b|I|w]|a|could_|hat_|he |o|t|t_|the_|to_|u|a_|d|f|m|n|p]|s]sailor_|to|
P71 e Ja3[3]33] 2 T2 [22[2[2] 2 [2 [2[1[ififa[rfifi] 1 [71]

[the[a [aII_[blue_[bottom_[but_[deep_[of_[sailor_[that_[to_[was [went [what ‘
P

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an un-
derscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
characters (in this case, se) and merges them. This creates a new token and de-
creases the counts for the original tokens s and e. c¢) At the second iteration, the
algorithm merges ¢ and the whitespace character . Note that the last character
of the first token to be merged cannot be whitespace, which prevents merging
across words. d) After 22 iterations, the tokens consist of a mix of letters, word
fragments, and commonly occurring words. e) If we continue this process indefi-
nitely, the tokens eventually represent the full words. f) Over time, the number
of tokens increases as we add word fragments to the letters and then decreases
again as we merge these fragments. In a real situation, there would be a very
large number of words, and the algorithm would terminate when the vocabulary
size (number of tokens) reached a predetermined value. Punctuation and capital
letters would also be treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

12.5.1
Notebook 12.3
Tokenization

12.5.2

12.5.3

218 12 Transformers

to a learned embedding. These embeddings are passed through a series of transformers.
We now consider each of these stages in turn.

Tokenization

A text processing pipeline begins with a tokenizer. This splits the text into smaller
constituent units (tokens) from a vocabulary of possible tokens. In the discussion above,
we have implied that these tokens represent words, but there are several difficulties.

« Inevitably, some words (e.g., names) will not be in the vocabulary.

e It’s unclear how to handle punctuation, but this is important. If a sentence ends
in a question mark, we must encode this information.

e The vocabulary would need different tokens for versions of the same word with
different suffixes (e.g., walk, walks, walked, walking), and there is no way to clarify
that these variations are related.

One approach would be to use letters and punctuation marks as the vocabulary, but this
would mean splitting text into very small parts and requiring the subsequent network to
re-learn the relations between them.

In practice, a compromise between letters and full words is used, and the final vo-
cabulary includes both common words and word fragments from which larger and less
frequent words can be composed. The vocabulary is computed using a sub-word tok-
enizer such as byte pair encoding (figure 12.8) that greedily merges commonly occurring
sub-strings based on their frequency.

Embeddings

Each token in the vocabulary V is mapped to a unique word embedding, and the embed-
dings for the whole vocabulary are stored in a matrix Q. € RP*IVI. To accomplish this,
the N input tokens are first encoded in the matrix T € RIVI*N | where the n'" column
corresponds to the nt" token and is a |V| x 1 one-hot vector (i.e., a vector where every
entry is zero except for the entry corresponding to the token, which is set to one). The
input embeddings are computed as X = 2. T, and €2, is learned like any other network
parameter (figure 12.9). A typical embedding size D is 1024, and a typical total vocab-
ulary size |V| is 30,000, so even before the main network, there are many parameters
in €. to learn.

Transformer model
Finally, the embedding matrix X representing the text is passed through a series of K

transformers, called a transformer model. There are three types of transformer models.
An encoder transforms the text embeddings into a representation that can support a

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.6

12.6 Encoder model example: BERT 219

seapree
yaeapree
Alre
ure
Jue
adoroyue
- [raue
e
-— worxe

-— ue
_oje

ue

Jue
| 1oyeqqe
- e
- oxe

[

Input, X Vocabulary embeddings, €2,

“an aardvark ate an ant”

Token indices, T

Figure 12.9 The input embedding matrix X € RP*¥ contains N embeddings of

length D and is created by multiplying a matrix 2. containing the embeddings
for the entire vocabulary with a matrix containing one-hot vectors in its columns
that correspond to the word or sub-word indices. The vocabulary matrix €2 is
considered a parameter of the model and is learned along with the other param-
eters. Note that the two embeddings for the word an in X are the same.

variety of tasks. A decoder predicts the next token to continue the input text. Encoder-
decoders are used in sequence-to-sequence tasks, where one text string is converted into
another (e.g., machine translation). These variations are described in sections 12.6-12.8,
respectively.

Encoder model example: BERT

BERT is an encoder model that uses a vocabulary of 30,000 tokens. Input tokens are
converted to 1024-dimensional word embeddings and passed through 24 transformers.
Each contains a self-attention mechanism with 16 heads. The queries, keys, and values
for each head are of dimension 64 (i.e., the matrices Q,p,, Qqp, Qi are 1024 x 64). The
dimension of the single hidden layer in the fully connected network in the transformer is
4096. The total number of parameters is ~ 340 million. When BERT was introduced,
this was considered large, but it is now much smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning (section 9.3.6). During pre-
training, the parameters of the transformer architecture are learned using self-supervision
from a large corpus of text. The goal here is for the model to learn general information
about the statistics of language. In the fine-tuning stage, the resulting network is adapted
to solve a particular task using a smaller body of supervised training data.

Draft: please send errata to udlbookmail@gmail.com.

12.6.1

Problem 12.6

220 12 Transformers

Word Linear + Probability of
embeddings Transformer softmax masked token
<cls>—[TTTTTT1 O =+ 1 N d
The— T T T T T+ O =
<mask>—T T T T T T+ - xx FOCO—Dmm—
pulled—TTTTT1T] - -
into—i[TT T T T JH - -
<mask>—=TT T T - ~-C) — D
station—TTTT T T~ J o U -
28 ce
i
g
g

Figure 12.10 Pre-training for BERT-like encoder. The input tokens (and a spe-
cial <cls> token denoting the start of the sequence) are converted to word em-
beddings. Here, these are represented as rows rather than columns, so the box
labeled “word embeddings” is XT. These embeddings are passed through a series
of transformers (orange connections indicate that every token attends to every
other token in these layers) to create a set of output embeddings. A small frac-
tion of the input tokens is randomly replaced with a generic <mask> token. In
pre-training, the goal is to predict the missing word from the associated output
embedding. As such, the output embeddings are passed through a softmax func-
tion, and the multiclass classification loss (section 5.24) is used. This task has
the advantage that it uses both the left and right context to predict the missing
word but has the disadvantage that it does not make efficient use of data; here,
seven tokens need to be processed to add two terms to the loss function.

Pre-training

In the pre-training stage, the network is trained using self-supervision. This allows the
use of enormous amounts of data without the need for manual labels. For BERT, the self-
supervision task consists of predicting missing words from sentences from a large internet
corpus (figure 12.10).! During training, the maximum input length is 512 tokens, and
the batch size is 256. The system is trained for a million steps, corresponding to roughly
50 epochs of the 3.3-billion word corpus.

Predicting missing words forces the transformer network to understand some syntax.
For example, it might learn that the adjective red is often found before nouns like house
or car but never before a verb like shout. It also allows the model to learn superficial
common sense about the world. For example, after training, the model will assign a
higher probability to the missing word train in the sentence The <mask> pulled into
the station than it would to the word peanut. However, the degree of “understanding”
this type of model can ever have is limited.

IBERT also uses a secondary task that predicts whether two sentences were originally adjacent in
the text or not, but this only marginally improves performance.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.6 Encoder model example: BERT

221

Transformer

S

Transformer
nE===
o
=~
S
=~
o
U e D o

(xK)

MLP +
sigmoid

Linear +
softmax

Probability of
positive review

Probability of
entity type

~CO——mm
-CO—omm

{

2

jS——

(1111

|

uostod
ooerrd

uoryeziuedio
Ajyus ou

Figure 12.11 After pre-training, the encoder is fine-tuned using manually labeled
data to solve a particular task. Usually, a linear transformation or a multi-layer
perceptron (MLP) is appended to the encoder to produce whatever output is
required. a) Example text classification task. In this sentiment classification
task, the <cls> token embedding is used to predict the probability that the
review is positive. b) Example word classification task. In this named entity
recognition problem, the embedding for each word is used to predict whether the

word corresponds to a person, place, or organization, or is not an entity.

a) Word
embeddings
<els> ~FFFFFTT |
The—[TTTTTT]
soup—[T T[TTT]
tasted—=[T T TTTT]
like—i[T TTTTT]
socks—=|
b) Word
embeddings
<cs>—{TTITT1] —
Zara—[T T TTTT]H
works—i[T T T T T T]+
at—[T T TTTT]
Chanel—[T T T T TT1H
m—[TTTTTTI
Victoria—-
12.6.2 Fine-tuning

In the fine-tuning stage, the model parameters are adjusted to specialize the network to
a particular task. An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format. Examples include:

Text classification:
token is placed at the start of each string during pre-training. For text classification
tasks like sentiment analysis (in which the passage is labeled as having a positive or
negative emotional tone), the vector associated with the <cls> token is mapped to a
single number and passed through a logistic sigmoid (figure 12.11a). This contributes to

a standard binary cross-entropy loss (section 5.4).

Draft: please send errata to udlbookmail@gmail.com.

In BERT, a special token known as the classification or <cls>

12.7

12.7.1

222 12 Transformers

Word classification: The goal of named entity recognition is to classify each word as
an entity type (e.g., person, place, organization, or no-entity). To this end, each input
embedding x,, is mapped to an E x 1 vector where the E entries correspond to the F
entity types. This is passed through a softmax function to create probabilities for each
class, which contribute to a multiclass cross-entropy loss (figure 12.11b).

Text span prediction: In the SQuAD 1.1 question answering task, the question and a
passage from Wikipedia containing the answer are concatenated and tokenized. BERT
is then used to predict the text span in the passage that contains the answer. Each
token maps to two numbers indicating how likely it is that the text span begins and
ends at this location. The resulting two sets of numbers are put through two softmax
functions. The likelihood of any text span being the answer can be derived by combining
the probability of starting and ending at the appropriate places.

Decoder model example: GPT3

This section presents a high-level description of GPT3, an example of a decoder model.
The basic architecture is extremely similar to the encoder model and comprises a series of
transformers that operate on learned word embeddings. However, the goal is different.
The encoder aimed to build a representation of the text that could be fine-tuned to
solve a variety of more specific NLP tasks. Conversely, the decoder has one purpose: to
generate the next token in a sequence. It can generate a coherent text passage by feeding
the extended sequence back into the model.

Language modeling

GPT3 constructs an autoregressive language model. This is easiest to understand with
a concrete example. Consider the sentence It takes great courage to let yourself appear
weak. For simplicity, let’s assume that the tokens are the full words. The probability of
the full sentence is:

Pr(It takes great courage to let yourself appear weak) =
Pr(It) x Pr(takes

It) x Pr(great|It takes) x Pr(courage

It takes great) x
Pr(to|It takes great courage) x Pr(let

It takes great courage to) X

Pr(yourself|It takes great courage to let) x
Pr(appear|It takes great courage to let yourself) x

Pr(weak|It takes great courage to let yourself appear). (12.14)

More formally, an autoregressive model factors the joint probability Pr(ti,ta, ..., tx) of
the N observed tokens into an autoregressive sequence:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.7.2

12.7.3

12.7 Decoder model example: GPT3 223

N
Pr(ty,ta, ..., tx) = Pr(ty) [[Pritalts, . ta-1). (12.15)
n=2
The autoregressive formulation demonstrates the connection between maximizing the log
probability of the tokens in the loss function and the next token prediction task.

Masked self-attention

To train a decoder, we maximize the log probability of the input text under the autore-
gressive model. Ideally, we would pass in the whole sentence and compute all the log
probabilities and gradients simultaneously. However, this poses a problem; if we pass in
the full sentence, the term computing log [Pr(great|It takes)] has access to both the an-
swer great and the right context courage to let yourself appear weak. Hence, the system
can cheat rather than learn to predict the following words and will not train properly.

Fortunately, the tokens only interact in the self-attention layers in a transformer
network. Hence, the problem can be resolved by ensuring that the attention to the
answer and the right context is zero. This can be achieved by setting the corresponding
dot products in the self-attention computation (equation 12.5) to negative infinity before
they are passed through the softmax]e| function. This is known as masked self-attention.
The effect is to make the weight of all the upward-angled arrows in figure 12.1 zero.

The entire decoder network operates as follows. The input text is tokenized, and the
tokens are converted to embeddings. The embeddings are passed into the transformer
network, but now the transformers use masked self-attention so that they can only attend
to the current and previous tokens. Each of the output embeddings can be thought of as
representing a partial sentence, and for each, the goal is to predict the next token in the
sequence. Consequently, after the transformers, a linear layer maps each word embedding
to the size of the vocabulary, followed by a softmax[e] function that converts these values
to probabilities. During training, we aim to maximize the sum of the log probabilities of
the next token in the ground truth sequence at every position using a standard multiclass
cross-entropy loss (figure 12.12).

Generating text from a decoder

The autoregressive language model is the first example of a generative model discussed
in this book. Since it defines a probability model over text sequences, it can be used
to sample new examples of plausible text. To generate from the model, we start with
an input sequence of text (which might be just a special <start> token indicating the
beginning of the sequence) and feed this into the network, which then outputs the proba-
bilities over possible subsequent tokens. We can then either pick the most likely token or
sample from this probability distribution. The new extended sequence can be fed back
into the decoder network that outputs the probability distribution over the next token.
By repeating this process, we can generate large bodies of text. The computation can
be made quite efficient as prior embeddings do not depend on subsequent ones due to

Draft: please send errata to udlbookmail@gmail.com.

Problem 12.7

Notebook 12

Decoding
strategies

2.4

12.7.4

224 12 Transformers

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
<start>—=[T T[] nE=: AR
It—iL T T T TT1H O [T takes
takes—L T T T T T 1+ O “[I] great
great—i[| [[[[| S5} "[[I] courage
courage—i[T T T T T | O T to
to—[TTTTTIH O T det
let—i[TTTTTI- U O "I yourself
____________ ’ o N N
g - &%
28 S ®
g &
g
2.

Figure 12.12 Training GPT3-type decoder network. The tokens are mapped to
word embeddings with a special <start> token at the beginning of the sequence.
The embeddings are passed through a series of transformers that use masked
self-attention. Here, each position in the sentence can only attend to its own
embedding and the embeddings of tokens earlier in the sequence (orange connec-
tions). The goal at each position is to maximize the probability of the following
ground truth token in the sequence. In other words, at position one, we want to
maximize the probability of the token It; at position two, we want to maximize
the probability of the token takes; and so on. Masked self-attention ensures the
system cannot cheat by looking at subsequent inputs. The autoregressive task has
the advantage of making efficient use of the data since every word contributes a
term to the loss function. However, it only exploits the left context of each word.

the masked self-attention. Hence, much of the earlier computation can be recycled as we
generate subsequent tokens.

In practice, many strategies can make the output text more coherent. For example,
beam search keeps track of multiple possible sentence completions to find the overall most
likely (which is not necessarily found by greedily choosing the most likely next word at
each step). Top-k sampling randomly draws the next word from only the top-K most
likely possibilities to prevent the system from accidentally choosing from the long tail of
low-probability tokens and leading to an unnecessary linguistic dead end.

GPT3 and few-shot learning

Large language models like GPT3 apply these ideas on a massive scale. In GPT3, the
sequence lengths are 2048 tokens long, and the total batch size is 3.2 million tokens.
There are 96 transformers (some of which implement a sparse version of attention), each
processing a word embedding of size 12288. There are 96 heads in the self-attention
layers, and the value, query, and key dimension is 128. It is trained with 300 billion
tokens and contains 175 billion parameters.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.7 Decoder model example: GPT3 225

Here’s an example of completing text from the GPT3 model where the text provided
to the model is in orange, and the generated text is in cyan:

Understanding Deep Learning is a new textbook from MIT Press by Simon Prince that’s de-
signed to offer an accessible, broad introduction to the field. Deep learning is a branch of
machine learning that is concerned with algorithms that learn from data that is unstructured
or unlabeled. The book is divided into four sections:

1. Introduction to deep learning
Deep learning architecture

Deep learning algorithms

s~ W

Applications of deep learning

The first section offers an introduction to deep learning, including its history and origins.
The second section covers deep learning architecture, discussing various types of neural net-
works and their applications. The third section dives into deep learning algorithms, including
supervised and unsupervised learning, reinforcement learning, and more. The fourth section
applies deep learning to various domains, such as computer vision, natural language processing,
and robotics.

This continuation is plausible, albeit only partially accurate.

One surprising property of learning models on this scale is that they can perform many
tasks without fine-tuning. If we provide several examples of correct question/answer pairs
and then another question, they often answer the final question correctly by completing
the sequence. One example is correcting English grammar:

Poor English input: I eated the purple berries.

Good English output: I ate the purple berries.

Poor English input: Thank you for picking me as your designer. I’d appreciate it.

Good English output: Thank you for choosing me as your designer. I appreciate it.

Poor English input: The mentioned changes have done. or I did the alteration that you

requested. or I changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or I made the alteration that

you requested. or I changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output: I'd be more than happy to work with you on another project.
(result from Brown et al., 2020)

Here, the text containing the paired examples in orange was provided as context for
GPT3, and the system then generated the correct answer in cyan. This phenomenon
extends to many situations, including generating code snippets based on natural language
descriptions, arithmetic, translating between languages, and answering questions about
text passages. Consequently, it is argued that enormous language models are few-shot
learners; they can learn to do novel tasks based on just a few examples. However,
performance is erratic in practice, and the extent to which it is extrapolating from
learned examples rather than merely interpolating or copying verbatim is unclear.

Draft: please send errata to udlbookmail@gmail.com.

226

12 Transformers

a)

Word
embeddings

Transformer

<start>-—i

The—]

SOUP—»!

tasted—-i

like—!

socks—-1

b)

(xK)

Word

embeddings

7

<start>—»!

la—

SOUpE—-

avait—-

le—

2OTt—

de.

—

chaussettes™

Figure 12.13 Encoder-decoder architecture.

0000

A

00

O

Transformer with masked
and cross attention

Linear +
softmax

Probability of
target token
Tia
] soupe
T avait
e
"] gott
T de

"] chaussettes

IossTe(R
21qa7

Two sentences are passed to the

system with the goal of translating the first into the second. a) The first sentence
is passed through a standard encoder. b) The second sentence is passed through a
decoder that uses masked self-attention but also attends to the output embeddings
of the encoder using cross-attention (orange rectangle). The loss function is the
same as for the decoder model; we want to maximize the probability of the next
word in the output sequence.

12.8

Encoder-decoder model example: machine translation

Translation between languages is an example of a sequence-to-sequence task. This re-
quires an encoder (to compute a good representation of the source sentence) and a
decoder (to generate the sentence in the target language). This task can be tackled
using an encoder-decoder model.

Consider translating from English to French. The encoder receives the sentence in
English and processes it through a series of transformers to create an output representa-
tion for each token. During training, the decoder receives the ground truth translation
in French and passes it through a series of transformers that use masked self-attention
and predict the following word at each position. However, the decoder layers also attend
to the output of the encoder. Consequently, each French output word is conditioned on

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.9

12.9 Transformers for long sequences 227

Ny e Ny Cross-attention

D D

Decoder Queries, Na
InPUt' Xdec QZ,BQ]-T + Qquec
N,

N, 4 Ny

Attention,
D Softmax [K”Q| D

Keys, Output,
D K=8,1" + X, V - Softmax [K” Q]

Ne

Encoder
Input, Xcpe D

Values,

\\/:Bv]_T + 2y Xene /

Figure 12.14 Cross-attention. The flow of computation is the same as in stan-
dard self-attention. However, the queries are calculated from the decoder embed-
dings Xgec, and the keys and values from the encoder embeddings Xen.. In the
context of translation, the encoder contains information about the source lan-
guage, and the decoder contains information about the target language statistics.

the previous output words and the source English sentence (figure 12.13).

This is achieved by modifying the transformers in the decoder. The original trans-
former in the decoder (figure 12.12) consisted of a masked self-attention layer followed
by a neural network applied individually to each embedding. A new self-attention layer
is added between these two components, in which the decoder embeddings attend to the
encoder embeddings. This uses a version of self-attention known as encoder-decoder at-
tention or cross-attention, where the queries are computed from the decoder embeddings
and the keys and values from the encoder embeddings (figure 12.14).

Transformers for long sequences

Since each token in a transformer encoder model interacts with every other token, the
computational complexity scales quadratically with the length of the sequence. For a
decoder model, each token only interacts with previous tokens, so there are roughly
half the number of interactions, but the complexity still scales quadratically. These
relationships can be visualized as interaction matrices (figure 12.15a-b).

This quadratic increase in the amount of computation ultimately limits the length of
sequences that can be used. Many methods have been developed to extend the trans-

Draft: please send errata to udlbookmail@gmail.com.

12.10

228 12 Transformers

[«5)
~

0O
~

Queries
Queries

(0]
~

0Q
N—r

Queries
Queries

Keys Keys

Figure 12.15 Interaction matrices for self-attention. a) In an encoder, every token
interacts with every other token, and computation