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Abstract
Binary classifiers are routinely evaluated with performance measures such as sensitivity

and specificity, and performance is frequently illustrated with Receiver Operating Character-

istics (ROC) plots. Alternative measures such as positive predictive value (PPV) and the as-

sociated Precision/Recall (PRC) plots are used less frequently. Many bioinformatics studies

develop and evaluate classifiers that are to be applied to strongly imbalanced datasets in

which the number of negatives outweighs the number of positives significantly. While ROC

plots are visually appealing and provide an overview of a classifier's performance across a

wide range of specificities, one can ask whether ROC plots could be misleading when ap-

plied in imbalanced classification scenarios. We show here that the visual interpretability of

ROC plots in the context of imbalanced datasets can be deceptive with respect to conclu-

sions about the reliability of classification performance, owing to an intuitive but wrong inter-

pretation of specificity. PRC plots, on the other hand, can provide the viewer with an

accurate prediction of future classification performance due to the fact that they evaluate

the fraction of true positives among positive predictions. Our findings have potential implica-

tions for the interpretation of a large number of studies that use ROC plots on

imbalanced datasets.

Introduction
Binary classifiers are statistical and computational models that divide a dataset into two groups,
positives and negatives. They have been successfully applied to a wide range of biological and
medical problems in recent years [1–3]. The evaluation of a classifier's prediction performance
is of great importance in order to be able to judge its usefulness, also in comparison to compet-
ing methods. Commonly used measures of classifier performance in the phase of model con-
struction are accuracy, error rate, and the Area under the Receiver Operating Characteristics
(ROC) curve (AUC) [4]. Various additional measures are useful for the evaluation of the final
model, and several plots provide visual representations, such as ROC and Precision-Recall
(PRC) plots [5].
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Class imbalance—a difference in the numbers of positive and negative instances, usually
with the negatives outnumbering the positives—occurs in a wide range of scientific areas, in-
cluding the life sciences, where unequal class distributions arise naturally [6–9]. The classifi-
cation of imbalanced datasets is a relatively new challenge in the field of machine learning
[5, 10]. While many solutions for binary classification on imbalanced data have been pro-
posed [5, 11], they are mostly related to either data resampling [7, 12–14] or model-training
[15–19]. Despite the development of state-of-the-art solutions for the building of classifiers
with imbalanced data [5, 11, 20], selecting a suitable performance evaluation method is
often underestimated.

It is important to recognize that the evaluation in the training phase is different from the
evaluation of the final model. The first phase is to select the most effective and robust model
during training. It usually divides a training dataset further into training and validation subsets,
for example for cross-validation [21]. The second phase is to evaluate the final model after the
training. Ideally, the test data of this phase reflects the class distributions of the original popula-
tion even though such distributions are usually unknown. This article exclusively analyses the
performance evaluation of the final model.

The rapid expansion in high-throughput biological experiments produces a number of
large-sized datasets, and the majority of such datasets can be expected to be imbalanced [8, 22,
23]. Here, we review the theoretical background of commonly used evaluation measures, spe-
cifically ROC [24, 25], PRC [26], concentrated ROC (CROC) [27], and Cost Curves (CC) [28].
ROC is the most popular evaluation method for binary classifiers, but the interpretation of
ROC curves requires a special caution when used with imbalanced datasets [29]. ROC alterna-
tives, PRC, CROC, and CC, are less popular than ROC, but they are known to be robust even
under imbalanced datasets [26–28]. In this study, we aim to clarify the difference between
these measures from several different perspectives, addressing a computational-biology/life-
sciences audience. To achieve this goal, we first introduce the basic single-threshold measures
such as specificity and sensitivity, followed by the introduction of ROC and ROC alternative
plots. We then discuss precision as an informative measure under imbalanced data as well as
PRC that itself is based on precision. In a simulation study we analyse the behaviour and the
utility of ROC, PRC, CROC, and CC when applied in the context of imbalanced datasets. The
simulations use randomly generated samples with different performance levels. Subsequently,
we show the results of a literature analysis that investigates what evaluation measures are used
in real-world studies on imbalanced datasets. The literature analysis is based on two sets of
PubMed search results. In addition, we re-analyse classifier performance from a previously
published study, on a popular microRNA gene discovery algorithm called MiRFinder [30]. We
also include a short review of available evaluation tools.

Theoretical Background
Through the Theoretical Background section, we review the performance measures including
basic measures from the confusion matrix and threshold-free measures such as ROC and PRC.
We also include simple examples where necessary and a short introduction of tools. We use
three distinct labels, ROC, PRC, and Tools, to organise the section. The first label, ROC, repre-
sents the theoretical background of basic measures, ROC, and ROC alternatives except PRC.
The second label, PRC, represents the theoretical background of precision and PRC and com-
parisons between ROC and PRC. Finally, the third label, Tools, represents a short introduction
of the tools for ROC, ROC alternatives, and PRC. We use these labels at the beginning of the
sub-section titles to make the whole section easy to follow.
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ROC: Combinations of four outcomes in the confusion matrix form
various evaluation measures
In binary classification, data is divided into two different classes, positives (P) and negatives
(N) (see Fig. 1A, left oval). The binary classifier then classifies all data instances as either posi-
tive or negative (see Fig. 1A, right oval). This classification produces four types of outcome—
two types of correct (or true) classification, true positives (TP) and true negatives (TN), and
two types of incorrect (or false) classification, false positives (FP) and false negatives (FN) (see
Fig. 1B). A 2x2 table formulated with these four outcomes is called a confusion matrix. All the

Fig 1. Actual and predicted labels generate four outcomes of the confusionmatrix. (A) The left oval
shows two actual labels: positives (P; blue; top half) and negatives (N; red; bottom half). The right oval shows
two predicted labels: “predicted as positive” (light green; top left half) and “predicted as negative” (orange;
bottom right half). A black line represents a classifier that separates the data into “predicted as positive”
indicated by the upward arrow “P” and “predicted as negative” indicated by the downward arrow “N”. (B)
Combining two actual and two predicted labels produces four outcomes: True positive (TP; green), False
negative (FN; purple), False positive (FP; yellow), and True negative (TN; red). (C) Two ovals show examples
of TPs, FPs, TNs, and FNs for balanced (left) and imbalanced (right) data. Both examples use 20 data
instances including 10 positives and 10 negatives for the balanced, and 5 positives and 15 negatives for the
imbalanced example.

doi:10.1371/journal.pone.0118432.g001
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basic evaluation measures of binary classification are derived from the confusion matrix (see
Table 1).

The most widely used basic measures of classifier performance are accuracy (ACC) and
error rate (ERR) [5]. Sensitivity (SN) and specificity (SP) are also popular [31]. Sensitivity is
equivalent to true positive rate (TPR) and recall (REC), and specificity is equivalent to 1—false
positive rate (FPR). Another measure is precision (PREC), and PRC is based on it. Precision is
also equivalent to positive predictive value (PPV).

Matthews correlation coefficient (MCC) [32] and Fβ score [33] are also useful but less fre-
quency used. MMC is a correlation coefficient calculated from all four values of the confusion
matrix. The Fβ score is a harmonic mean of recall and precision where β is commonly 0.5, 1, or 2.

All these measures have different advantages and disadvantages. Since they behave differ-
ently under balanced and imbalanced datasets, it is important to consider the class distribution
of the data at hand or to be analysed in future applications and to select appropriate measures
for meaningful performance evaluations.

ROC: The ROC plot provides a model-wide evaluation of binary
classifiers
Table 1 lists basic measures for the evaluation of classifier performance. All of these measures
are single-threshold measures, that is, they are defined for individual score thresholds (cutoffs)
of a classifier and cannot give an overview of the range of performance with varying thresholds.
While any such threshold, which divides a dataset into positively and negatively predicted clas-
ses, can be reasonable in a particular application, it is not obvious how the right threshold
value should be chosen. A powerful solution is to use threshold-free measures such as the ROC
and PRC plots. These threshold-free measures require that classifiers produce some sort of
scores from which the dataset can be divided into positively and negatively predicted classes,
and not simply provide a static division. The majority of recent machine-learning libraries can
produce discriminant values or posterior probabilities that can be used as scores [27, 34, 35],
but not all classifiers provide such values.

The ROC plot shows the tradeoff between specificity and sensitivity [24]. It is model-wide
because it shows pairs of specificity and sensitivity values calculated at all possible threshold

Table 1. Basic evaluation measures from the confusion matrix.

Measure Formula

ACC (TP + TN) / (TP + TN + FN + FP)

ERR (FP + FN) / (TP + TN + FN + FP)

SN, TPR, REC TP / (TP + FN)

SP TN / (TN + FP)

FPR FP / (TN + FP)

PREC, PPV TP / (TP + FP)

MCC (TP * TN—FP * FN) / ((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2

F0.5 1.5 * PREC * REC / (0.25 * PREC + REC)

F1 2 * PREC * REC / (PREC + REC)

F2 5 * PREC * REC / (4 * PREC + REC)

ACC: accuracy; ERR: error rate; SN: sensitivity; TPR: true positive rate; REC: recall; SP: specificity; FPR:

false positive rate; PREC: precision; PPV: positive predictive value; MCC: Matthews correlation coefficient;

F: F score; TP: true positives; TN: true negatives; FP: false positives; FN: false negatives

doi:10.1371/journal.pone.0118432.t001
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scores. In ROC plots, classifiers with random performance show a straight diagonal line from
(0, 0) to (1, 1) [24], and this line can be defined as the baseline of ROC. A ROC curve provides
a single performance measure called the Area under the ROC curve (AUC) score. AUC is 0.5
for random and 1.0 for perfect classifiers [4]. AUC scores are convenient to compare the per-
formances of multiple classifiers.

ROC: The concentrated ROC (CROC) plot evaluates the early-retrieval
performance of a classifier
The early retrieval (ER) area of a ROC plot (see the grey rectangle area in Fig. 2A) is useful for
evaluating a fraction of the data with high-ranked instances [36, 37]. For example, if a classifier
predicts a large part of the data as positive, it can be time-consuming and expensive to examine
all the instances predicted as positive, especially when the dataset is large. Hence, it is practical
to check the performance of the early retrievals, which only examines a limited number of top-
scoring instances.

The concentrated ROC (CROC) plot facilitates the evaluation of early-retrieval performance
[27]. A CROC plot is constructed with a magnifier function that transforms the FPRs on the x-
axis. For instance, when using the exponential function with α = 7 (see Methods), this function
transforms FPRs [0.0, 0.5, 1.0] into [0.0, 0.971, 1.0]. The region between 0 and 0.5 is expanded,
whereas the region between 0.5 and 1.0 is shrunk. Similar to ROC plots, the area under the
curve (AUC) of a CROC curve is likewise effective for classifier comparison [27]. While a sim-
ple, single-threshold measure such as ROC50, which sums up true positives (TPs) until the
number of false positives (FPs) reaches 50 [38], can be useful in the evaluation of early-retrieval
performance, the CROC plot provides a visual representation over the range of performances
and with that a higher level of utility.

ROC: The cost curve (CC) takes misclassification costs into account
The cost curve (CC) is an alternative to the ROC plot [12, 28]. Cost curves analyse classification
performance by varying operating points [5]. Operating points are based on class probabilities
and misclassification costs. The normalized expected cost or NE[C] represents the classifica-
tion performance on the y-axis [28]. It is similar to the error rate, and therefore lower NE[C]
values indicate better classifiers. The probability cost function (+) or PCF (+) represents the op-
erating points on the x-axis [28]. PCF (+) is based on the probability of correctly classifying
positives, and it is calculated by class probabilities and misclassification costs [5]. The actual
calculations of PCF(+) and NE[C] are considerably more complex than the calculations in-
volved in ROC and PRC plots (see Supplementary Methods in S1 File for the PCF(+) and NE
[C] calculations).

PRC: Precision is an intuitive measure when evaluating binary
classifiers on imbalanced datasets
To investigate how the basic measures of classifier performance behave on balanced and imbal-
anced datasets, we created a simple example (see Fig. 1C). Both datasets have the same sample
size. The numbers of true and false positive and negative predictions (TP, FP, TN, and FN) are
defined as illustrated in Fig. 1C. Table 2 lists the results for the basic measures, as derived from
the two datasets. Only precision, MMC, and the three Fβ scores vary between the two datasets,
while the majority of measures stay unchanged (see columns Balanced and Imbalanced in
Table 2). More importantly, these unchanged measures fail to capture the poor performance of
the classifier for the imbalanced sample. For example, accuracy (ACC) indicates that the
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Fig 2. PRC curves have one-to-one relationships with ROC curves. (A) The ROC space contains one
basic ROC curve and points (black) as well as four alternative curves and points; tied lower bound (green),
tied upper bound (dark yellow), convex hull (light blue), and default values for missing prediction data
(magenta). The numbers next to the ROC points indicate the ranks of the scores to calculate FPRs and TPRs
from 10 positives and 10 negatives (See Table A in S1 File for the actual scores). (B) The PRC space
contains the PR points corresponding to those in the ROC space.

doi:10.1371/journal.pone.0118432.g002
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performance of the classifier is fine for both samples (0.6). However, precision (PREC/PPV) in-
dicates that the performance of the classifier is fine on the balanced (0.6) but relatively poor on
the imbalanced dataset (0.33). Hence, precision reveals differences in performance that go un-
noticed when using accuracy.

While MMC and the three Fβ scores also vary between the two datasets, precision is easier
to interpret. For instance, a precision of 0.33 can immediately be understood as 33% correct
predictions among the positive predictions. This understanding directly translates to the appli-
cation of the classifier to large datasets in which an estimate of the number of correct classifica-
tions among the positively classified instances (the "predictions") is of great importance.
Precision is a direct and intuitive measure of this aspect of performance.

PRC: The PRC plot shows the relationship between precision and
sensitivity, and its baseline moves with class distribution
The precision-recall (PRC) plot shows precision values for corresponding sensitivity (recall)
values. Similar to the ROC plot, the PRC plot provides a model-wide evaluation. The AUC
score of PRC, denoted as AUC (PRC), is likewise effective in multiple-classifier comparisons
[26].

While the baseline is fixed with ROC, the baseline of PRC is determined by the ratio of posi-
tives (P) and negatives (N) as y = P / (P + N). For instance, we have y = 0.5 for a balanced class
distribution, but y = 0.09 for an imbalanced class distribution in which the ratio of P:N is 1:10
(see Fig. 2B). Because of this moving baseline, AUC (PRC) also changes with the P:N ratio. For
instance, the AUC (PRC) of random classifiers is 0.5 only for balanced class distributions,
whereas it is P / (P + N) for the general case, including balanced and imbalanced distributions.
In fact, AUC (PRC) is identical to the y-position of the PRC baseline.

PRC: PRC and ROC curves require different treatments when
interpolating between points
A PRC curve has a one-to-one relationship with a corresponding ROC curve [26], that is, each
point in any of the two curves uniquely determines a corresponding point in the other curve.
Nonetheless, care must be taken when interpolations between points are performed, since the
interpolation methods for PRC and ROC curves differ—ROC analysis uses linear and PRC
analysis uses non-linear interpolation. Interpolation between two points A and B in PRC space

Table 2. Example of basic evaluation measures on a balanced and on an imbalanced dataset.

Measure Balanced Imbalanced

ACC 0.6 0.6

ERR 0.4 0.4

SN (TPR, REC) 0.6 0.6

SP 0.6 0.6

FPR 0.4 0.4

PREC (PPV) 0.6 0.33

MCC 0.2 0.17

F0.5 0.6 0.37

F1 0.6 0.43

F2 0.6 0.52

For the numbers of true and false positives and negatives in the two datasets, see Fig. 1C.

doi:10.1371/journal.pone.0118432.t002
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can be represented as a function y = (TPA + x) / {TPA + x + FPA + ((FPB - FPA) � x) / (TPB -
TPA)} where x can be any value between TPA and TPB [26].

Three practical examples of ROC characteristics that associate with interpolation are ROC
convex hull [39], the treatment of ties, and default values for missing scores. To explore these
characteristics, we studied an example of 20 instances with an equal number of positives and
negatives (see Fig. 2A; also see Table A in S1 File for scores and labels).

The ROC convex hull gives an estimate of the best possible performance of a classifier [39].
It is a combination of straight lines connecting only some of the points (0–2–6–13–15–20 in
Fig. 2A), whereas the original ROC curve connects all the points with straight lines (all points
from 0 to 20 in Fig. 2A). It is easy to see that the AUC of this ROC convex hull is better than
that of the original ROC curve since some points are skipped for the ROC convex hull.

Classifiers sometimes produce ties (equal scores) for parts of the prediction (6–12 in
Fig. 2A). Three obvious approaches to make a ROC curve from these ties are to use the upper
bound with positive calculation first (6–8–12 in Fig. 2A), the lower bound with negative calcu-
lation first (6–10–12 in Fig. 2A), and the average (6–12 in Fig. 2A). ROC plotting tools normal-
ly use the average and lower bound methods [27, 40].

Classifiers sometimes fail to give scores to parts of the prediction. An example of such a case
is the use of filtering before classification. Instances excluded by filtering likely have no scores
assigned. In our example, the ROC plot shows a case in which the classifier gave scores for only
15 instances (0–15 in Fig. 2A) but not for the remaining five instances (16–20 in Fig. 2A). If the
same default values are assigned to these five instances as a measure to compensate for missing
scores, the ROC curve can linearly continue to the point (1, 1) (15–20 in Fig. 2A).

Although interpolation in PRC analysis requires more calculations than in ROC analysis, it
is nonetheless critical to follow the correct procedure if misleading plots are to be avoided, es-
pecially when the distance of PRC points to be interpolated between is very large. The one-to-
one relationship of individual points in our simple example can be seen on points 0–20 in
Fig. 2A and B.

Tools: A number of tools for making ROC and PRC plots are freely
available
A number of tools for making ROC and PRC plots are freely available, but PRC functionality is
generally deficient in comparison with ROC functionality. ROCR [40] is a popular R [41] pack-
age for drawing a variety of evaluation plots, including ROC, PRC, and CC. It lacks functionali-
ty for the calculation of non-linear PRC interpolations. AUCCalculator [26] is a Java
application and provides accurate PRC and ROC interpolation. However, it lacks graph-plot-
ting capability. CROC [27] is a Python package for CROC and ROC calculations. Several inte-
grated machine learning and bioinformatics platforms such as WEKA [34] and Bioconductor
[42, 43] also have basic functions or libraries for making ROC and PRC plots. Overall, a combi-
nation of AUCCalculator and any graph plotting program can be recommended for the crea-
tion of accurate PRC plots. ROCR can also be recommended, but only if interpolation between
PRC points is not necessary.

Material and Methods

Basic evaluation measures
We calculated basic evaluation measures from a confusion matrix. The confusion matrix of bi-
nary classifiers has four outcomes, true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). The measures we discuss in this study are accuracy (ACC), error rate

Binary Classifiers and Imbalanced Datasets

PLOS ONE | DOI:10.1371/journal.pone.0118432 March 4, 2015 8 / 21



(ERR), sensitivity (SN), specificity (SP), true positive rate (TPR), recall (REC), false positive
rate (FPR), precision (PREC), positive predictive value (PPV), Matthews correlation coefficient
(MCC) [32], and Fβ score [33] where β is 0.5, 1, or 2. Table 1 summarizes the formulae of
these measures.

Model-wide evaluation measures
The model-wide evaluation measures we analyse in our study are ROC, PRC, CROC, and CC.
We used in-house Python and R scripts to calculate the values that are necessary to generate
them. The scripts also include graph-plotting capability. The ROC plot has FPR or 1—specifici-
ty on the x-axis and TPR or sensitivity on the y-axis. The PRC plot has sensitivity/recall on the
x-axis and precision/PPV on the y-axis. The CROC plot has transformed FPR on the x-axis
and TPR on the y-axis. We used an exponential function, f(x) = (1 - exp(-αx))/(1 - exp(-α))
with α = 8 to transform the FPRs. The CC plot has the probability cost function (+) or PCF (+)
on the x-axis and normalized expected cost or NE[C] on the y-axis [28]. PCF (+) is based on
the probability of correctly classifying positives, whereas NE[C] represents the classification
performance (see Supplementary Methods in S1 File for the PCF(+) and NE[C] calculations).
We used AUCCalculator [26] and the CROC Python library [27] to calculate areas under
the curve.

Simulations with random sampling
To analyse and compare the model-wide evaluation measures, we generated samples with five
different levels of classifier performance by randomly drawing scores from score distributions
for positives and negatives separately (Table 3). Instances with higher scores indicate that they
are more likely labelled as positive. We sampled positives and negatives from a normal (N) or a
Beta distribution to make four different levels, Random (Rand), Poor early retrieval (ER-),
Good early retrieval (ER+), and Excellent (Excel). Instead of sampling from distributions, we
used constant values 1 (positive) and 0 (negative) to make scores for Perfect (Perf). The scores
of ER- and ER+ are based on similar score distributions. They differ in that ER+ tends to have
more positives in higher (better) ranks, whereas ER- tends to have more positives in lower
(worse) ranks. We stored the generated scores in arrays for sorting. We subsequently ranked
them from the lowest to the highest scores. For tied scores, we assigned ranks in order of occur-
rence in the original array. Fig. 3 shows a visualisation of the score distributions for the five lev-
els. In our simulation, we used 1000 positives and 1000 negatives for balanced datasets and
1000 positives and 10 000 negatives for imbalanced datasets. One round of simulation uses
these samples to calculate all the necessary measures for ROC, PRC and the other plots. We
then started again from the data sampling for another round. We iterated the whole process

Table 3. Score distributions of positives and negatives for the performance simulations.

Level Positives Negatives

Random (Rand) N(0, 1) N(0, 1)

Poor early retrieval (ER-) Beta(4, 1) Beta(1, 1)

Good early retrieval (ER+) Beta(1, 1) Beta(1, 4)

Excellent (Excel) N(3, 1) N(0, 1)

Perfect (Perf) 1 0

N: normal distribution with mean and variance; Beta: Beta distribution with shape parameters. For

performance level Perfect, fixed values 1 and 0 were used

doi:10.1371/journal.pone.0118432.t003
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1000 times. To plot the curves, we made 1000 bins for the x-axis and calculated the median of
the corresponding values for the y-axis.

PubMed search
To investigate what evaluation measures are used for binary classifiers in life science studies,
we performed two PubMed searches. In the first PubMed search, we aimed to find how popular
ROC is in general and used the term “ROC OR (Receiver Operating Characteristics)”. From
the results we collected the annual number of articles between 2002 and 2012. In the second
PubMed search, we aimed to find genome-wide studies with Support Vector Machine classifi-
ers and used the term “((Support Vector Machine) AND Genome-wide) NOT Association”.
We used “Support Vector Machine” to find studies with binary classifiers and “Genome-wide”
to find studies with imbalanced datasets. We also added “NOT Association” to exclude Ge-
nome-Wide Association Studies (GWAS) [44]. The search resulted in a list of 63 articles until
May 2013 (Table B in S1 File). Three review articles and two articles that had no full-text access
were excluded from further analysis.

Literature analysis on the second PubMed search
Wemanually analysed the 58 articles retrieved by the second search and categorized them ac-
cording to three main and 13 sub-categories (Tables C and D in S1 File). The three main

Fig 3. Combinations of positive and negative score distributions generate five different levels for the
simulation analysis.We randomly sampled 250 negatives and 250 positives for Rand, ER-, ER+, Excel,
and Perf, followed by converting the scores to the ranks from 1 to 500. Red circles represent 250 negatives,
whereas green triangles represent 250 positives.

doi:10.1371/journal.pone.0118432.g003
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categories are Type of SVM, Data type, and Evaluation method. We used the Type of SVM cat-
egory to identify whether the SVM classifier is a binary classier. It contains two sub categories,
BS (binary SVM) and OS (other SVM) (Table C in S1 File). We used the Data type category to
identify whether the data set used for performance evaluation is imbalanced. It contains five
sub categories, IB1 (strongly imbalanced), IB2 (imbalanced), SS (small sample size), BD (bal-
anced data), and OD (other types of data) (Table C in S1 File). We used the Evaluation method
category to identify what methods are used to evaluate the classification models. It contains
five sub categories, ROC, STM1 (single-threshold measure only, group 1), PRC, pROC (partial
ROC), STM2 (single-threshold measure only, group 2), and OE (other evaluation methods)
(Table C in S1 File). We selected the sub-categories BS, IB1, IB2, SS, ROC, and PRC and calcu-
lated the proportions of articles for each sub-category against the total number of articles. Fur-
thermore, we filtered the articles with the filter "BS and (IB1 or IB2) and not SS". The resulting
33 articles represent binary SVM classification studies with large size imbalanced data sets.

Re-analysis of the MiRFinder study with ROC and PRC
We generated two test datasets for the re-analysis of the MiRFinder study and denoted them as
T1 and T2 (Fig. 4). Dataset T1 uses actual miRNAs from several organisms for positives and
pseudo-miRNAs generated by shuffling nucleotides of real miRNAs for negatives. Dataset T2
uses all functional RNA candidates generated by RNAz [45]. To extract the candidates, we
used the whole C. elegansmultiple alignment data with five worms (May 2008, ce6/WS190)
from the University of California, Santa Cruz (USCS) Genome Bioinformatics site (http://
genome.ucsc.edu). Positive candidates are those that overlap with miRBase [46] entries, and

Fig 4. Simple scheme diagrams on the generation of datasets T1 and T2. T1 contains miRNA genes
frommiRBase as positives. Negatives were generated by randomly shuffling the nucleotides of the positives.
For T2, the RNAz tool was used to generate miRNA gene candidates. Positives are candidate genes that
overlap with the actual miRNA genes frommiRBase.

doi:10.1371/journal.pone.0118432.g004
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negatives are the remaining functional RNA candidates. T1 contains 819 positives and 11 060
negatives, and T2 contains 111 positives and 13 444 negatives. To calculate the scores of the
miRNA discovery tools, we downloaded the source code of MiRFinder [30], miPred [47],
RNAmicro [48], ProMir [49], and RNAfold [50] and installed them locally. We then calculated
the scores of the tools on T1 and T2 (see Supplementary Methods in S1 File for more details on
test data and score calculations).

Results and Discussion

Different perspectives on evaluation measures show that PRC is more
informative than ROC with imbalanced datasets
Through the Results section, we aim to show how evaluation measures act under imbalanced
datasets from several different perspectives. We use three distinct labels, Simulation, Literature
analysis, and Re-analysis to organise the Results section. The first label, Simulation, represents
a simulation analysis with randomly generated samples for ROC, CROC, CC, and PRC. The
second label, Literature analysis, represents an analysis of the results from two sets of PubMed
search to investigate the actual usage of evaluation measures in the life science literature. Final-
ly, the third label, Re-analysis, represents a re-analysis of the MiRFinder study to reveal the dif-
ference between ROC and PRC in a real-world application. We use these labels at the
beginning of the sub-section titles to make the whole Results section easy to follow.

Simulation: The PRC plot is more informative than ROC, CROC, and CC
plots when evaluating binary classifiers on imbalanced datasets
To investigate differences between ROC, CROC, CC, and PRC plots, we performed simulations
with random sampling under balanced and imbalanced cases. To cover a wide range of practi-
cally relevant classifier behaviours, we studied five different performance levels—perfect, excel-
lent, good early retrieval (ER+), poor early retrieval (ER-), and random—and generated scores
by drawing randomly from different score distributions for positives and negatives separately
(see Table 3). A balanced sample consisted of 1 000 positives and 1 000 negatives, and an im-
balanced sample consisted of 1 000 positives and 10 000 negatives. Our observations about the
four different types of plot are as follows.

ROC plots. The ROC plots are unchanged between balanced and imbalanced datasets
(Fig. 5A), and all AUC (ROC) scores are unhanged accordingly (Table E in S1 File). Two points
of ER- (red dots with black circle in Fig. 5A) are a good example to explain the difference of in-
terpretations of the curves between balanced and imbalanced. The point for the balanced case
represents 160 FPs and 500 TPs. ER- is likely considered a good classifier if this point is used
for a performance evaluation. In contrast, the same point for the imbalanced case represents 1
600 FPs and 500 TPs, and the performance of the classifier is likely considered poor in this
case. The ROC curves fail to explicitly show this performance difference. Moreover, it is also a
good example to explain a potential mismatch between ROC curves in the early retrieval area
and AUC (ROC). ER+ is clearly better than ER- in the early retrieval area, but AUC (ROC)
scores are the same or 0.8 for both ER- and ER+ (Table E in S1 File). Therefore, AUC (ROC) is
inadequate to evaluate the early retrieval performance in this case. Another potential problem
is that AUC (ROC) can be inaccurate for fair comparisons when two ROC curves are crossing
each other. The results of the simulations suggest that the interpretation of the ROC plot re-
quires a special caution when the data are imbalanced and the early retrieval area needs to
be checked.
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Concentrated ROC (CROC) plots. Like the ROC plots, the CROC plots (Fig. 5B) are un-
changed between balanced and imbalanced datasets. Accordingly, all AUC (CROC) scores are
also unchanged (Table E in S1 File). Two points of ER- (red dots with black circle in Fig. 5B)
represent a TPR of 0.5 and f(FPR) of 0.67. Since FPR is 0.16 when the f(FPR) is approximately
0.67, the points represent 500 TPs in both cases but 160 FPs in the balanced and 1 600 FPs in
the imbalanced case. Similar to ROC, the CROC curves fail to explicitly show this performance
difference. Nonetheless, the difference of the performances in the early retrieval area is clear be-
cause the area is widely expanded, which is the main advantage of CROC over ROC. Therefore,
CROC can be useful when comparing the performance of classifiers in the early retrieval area.
Nevertheless, CROC has the same issues as ROC in terms of the interpretation of the curves,
especially when the dataset is imbalanced. Moreover, optimized parameters for magnifier func-
tions, such as α, are usually unknown and difficult to decide, especially when multiple CROC
curves cross each other.

Cost curves (CC). The CC plots are also unchanged between balanced and imbalanced
datasets (Fig. 5C). CC is considerably different from the other ROC variants in terms of the

Fig 5. PRC is changed but the other plots are unchanged between balanced and imbalanced data. Each panel contains two plots with balanced (left)
and imbalanced (right) for (A) ROC, (B) CROC with exponential function: f(x) = (1 - exp(-αx))/(1 - exp(-α)) where α = 7, (C) CC, and (D) PRC. Five curves
represent five different performance levels: Random (Rand; red), Poor early retrieval (ER-; blue), Good early retrieval (ER+; green), Excellent (Excel; purple),
and Perfect (Perf; orange).

doi:10.1371/journal.pone.0118432.g005
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interpretation of the plot. It shows the classification performances for different PCF (+) values
that are based on misclassification costs and class probabilities. C(-|+) represents the cost of
misclassifying positives as negatives, and C(+|-) represents the cost of misclassifying negatives
as positives. p(+) and p(-) represent class probabilities for positives and negatives, respectively.
Misclassification costs are often unknown but can for example be estimated from the class dis-
tributions. For instance, misclassification costs can be C(-|+) = 1 and C(+|-) = 1 for a balanced,
and C(-|+) = 91 and C(+|-) = 9 for an imbalanced dataset. This would mean that the misclassi-
fication of positives as negatives is considerably more expensive than the misclassification of
negatives as positives. To get the PCF(+) value of 0.5 (red dots with black circle in Fig. 5C), the
corresponding class probabilities are p(+) = 0.5 and p(-) = 0.5 for the balanced dataset and p
(+) = 0.09 and p(-) = 0.91 for the imbalanced dataset. Once the PCF (+) value of interest is de-
termined, it is easy to compare the performances of multiple classifiers. Cost curves are useful
when the testing of various misclassification costs and class probabilities is required, but a good
understanding of PCF(+) and NE[C] is mandatory.

Precision-Recall (PRC) plots. In contrast to the ROC, CROC, and CC plots, the PRC plots
are changed between balanced and imbalanced dataset (Fig. 5D). Accordingly, AUC (PRC)
scores are also changed (Table E in S1 File). Two points of ER- (red dots with black circle in
Fig. 5D) indicate that 75% and 25% are correct positive predictions in the balanced and in the
imbalanced case, respectively, and these correct positive predictions are 50% of all positives.
Hence, PRC correctly shows that the performance of ER- is good in the balanced but poor in
the imbalanced case. The AUC (PRC) scores also support this (Table E in S1 File). Moreover,
PRC shows that the performance of ER+ is better than ER- in both balanced and imbalanced
cases. Again, AUC (PRC) scores support this (Table E in S1 File). In summary, PRC is able to
show performance differences between balanced and imbalanced datasets, and it can be useful
in revealing the early-retrieval performance.

Summary of the simulation. The overall results of the simulations suggest that PRC is the
most informative and powerful plot for imbalanced cases and is able to explicitly reveal differ-
ences in early-retrieval performance.

Literature analysis: The majority of studies on binary classifiers in
conjunction with imbalanced datasets use the ROC plot as their main
performance evaluation method
To assess to what degree our findings are relevant in practice, we analysed two sets of PubMed
search results (see Methods). The goal of the first analysis was to determine quantitatively how
popular ROC analysis is in general. The search result shows that ROC is indeed a popular
method and that its popularity has been steadily increasing over the last decade (Fig. 6; upper
panel).

The goal of the second analysis was to make a selection of binary-classification studies with
imbalanced datasets for a further analysis. We used the PubMed term “((Support Vector Ma-
chine) AND Genome-wide) NOT Association” to find studies with imbalanced datasets that
use support vector machines (SVMs) [51] for classification. The search resulted in 63 articles,
of which 58 were research articles with full-text availability (Fig. 6; lower panel; see Table B in
S1 File for a complete list of articles with references).

We categorized these 58 articles with respect to three categories: type of SVM, type of data,
and evaluation method. The summarized result (Table 4) shows that the majority of the studies
use SVM to build binary classifiers (Table 4; BS; 96.5%) and that more than half of the studies
use imbalanced datasets (Table 4; B1 and IB2; 63.8%). As expected, ROC is the most popular
method of performance evaluation (Table 4; ROC, All; 60.3%), and the proportion is even
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slightly increased after filtering by studies with binary classifiers with imbalanced datasets
(Table 4; ROC, BS AND IB; 66.7%). This filtering also excludes studies with small sample size
(Table 4; SS; 24.1%) since the approaches to solve imbalance problems with small sized data
can be different from those of medium and large sized data [5, 52]. Only four papers use PRC
(Table 4; PRC; 6.0%) as their evaluation method, whereas 22 papers use ROC (Table 4; ROC;
66.7%). Among them, three papers use both ROC and PRC. All of the remaining 10 papers use
single threshold measures.

Fig 6. Two PubMed search results show the annual number of papers found between 2002 and 2012.
The upper barplot shows the number of papers found by the term “ROC”, whereas the lower plot shows the
number found by the term “((Support Vector Machine) ANDGenome-wide) NOT Association”.

doi:10.1371/journal.pone.0118432.g006

Table 4. Literature analysis summarized by three main categories and six subcategories.

Maina Sub Description Allb BS AND IBc

SVM BS SVM binary classifiers 56 (95.6%) 33 (100%)

Data IB1 Imbalanced (�10-fold negatives) 28 (48.3%) 24 (72.7%)

IB2 Imbalanced (2 to 9-fold negatives) 9 (15.5%) 9 (27.3%)

SS Small sample size (�200) 14 (24.1%) -

Eval ROC ROC or AUC (ROC) 35 (60.3%) 22 (66.7%)

PRC PRC or AUC (PRC) 4 (6.9%) 4 (12.1%)

aSVM: type of SVM, Data: data type, Eval: evaluation method.
bThe total number of articles is 58.
cFiltered by SVM binary (BS) AND Imbalanced (IB1 or IB2) AND NOT Small sample size (SS). The total number of these articles is 33.

doi:10.1371/journal.pone.0118432.t004
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The results of the literature analysis clearly indicate that ROC is the most widely used evalu-
ation method with imbalanced data, suggesting that changing the main evaluation method
from ROC to PRC may influence many studies.

Re-analysis: A re-evaluation of a previously published study confirms
the advantages of the PRC plot over the ROC plot
To estimate how strongly studies of binary classifiers applied to imbalanced datasets could be
affected by a change of the main evaluation method from ROC to PRC, we selected a study
from our list of 58 research articles with full-text availability.

While the 58 studies vary across a wide range of research fields, five studies are from the
field of microRNA (miRNA) gene discovery (Table F in S1 File). miRNAs are a class of small
RNAs that have important regulatory roles in plants and animals [53], and finding genome lo-
cations of miRNA genes is a popular but challenging field in bioinformatics [54]. We selected
the MiRFinder study [30] for re-analysis with PRC for three reasons: it uses ROC in conjunc-
tion with imbalanced data, the test data is available, and the classifier can produce scores,
which is necessary for being able to create ROC and PRC plots.

The original MiRFinder study evaluates seven additional tools (Table G in S1 File). A ROC
curve is only presented for the MiRFinder classifier itself, whereas ROC points (single points in
ROC space) are provided for the other seven tools. From the seven additional tools evaluated
in the MiRFinder study, we selected for our analysis the three tools that can produce scores and
for which source code was available, namely miPred [47], RNAmicro [48], and ProMir [49],
and added RNAfold [50] as a fourth tool. RNAfold predicts RNA secondary structure by mini-
mizing over thermodynamic free energy. It is not a miRNA-specific tool, but the majority of
miRNA gene discovery tools, including the four tools selected for our re-analysis, strongly rely
on minimum free energy (MFE) calculations. It is thus interesting to determine how much ad-
ditional performance the more sophisticated tools provide when compared to a baseline of
RNAfold MFE calculations.

Since it is interesting to test performances under a variety of conditions, we added an addi-
tional test set. This test set was generated from the C. elegans genome by using the method de-
scribed in the RNAmicro study [48].

In total, we evaluated five different tools on two independent test sets. We denote the test
set from the MiRFinder study as T1 and the test set that we generated from the C. elegans ge-
nome as T2. The results of our evaluations are shown in Fig. 7 and Table 5 and are described
and discussed in the following sub-sections.

Re-analysis: PRC, but not ROC, reveals poor performance of some tools
when tested on T1
ROC on T1. Fig. 7A indicates that all classifiers have a very good to excellent prediction perfor-
mance. The top-performing classifiers, MiRFinder and miPred, have similar ROC curves, but
miPred appears to perform better than MiRFinder in the early-retrieval area. The ROC plot
does not immediately translate into an understanding of how reliable the predictions of the five
tools will be and require some pondering about the practical meaning of the false positive rates
shown. The AUC (ROC) scores (Table 5) indicate that MiRFinder is slightly better than
miPred when studied over the whole range of FPRs, but this difference is too small to be of any
practical relevance. The AUC (ROC) scores are in good agreement with the visual impression
of the ROC plot, but likewise fail in terms of interpretability with respect to their
practical meaning.
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PRC on T1. Similar to the ROC plot in Fig. 7A, the PRC plot in Fig. 7B indicates that all
classifiers have a very good to excellent prediction performance. However, we can see here that
high recovery rates come with a deterioration of precision for some classifiers, especially for
RNAmicro, but to a smaller extent also for RNAfold and ProMiR. We can also see that classifi-
er performance is better resolved, allowing to spot differences more easily. Overall, the PRC

Fig 7. A re-analysis of the MiRFinder study reveals that PRC is stronger than ROC on imbalanced
data. ROC and PRC plots show the performances of six different tools, MiRFinder (red), miPred (blue),
RNAmicro (green), ProMiR (purple), and RNAfold (orange). A gray solid line represents a baseline. The re-
analysis used two independent test sets, T1 and T2. The four plots are for (A) ROC on T1, (B) PRC on T1, (C)
ROC on T2, and (D) PRC on T2.

doi:10.1371/journal.pone.0118432.g007

Table 5. AUC scores of ROC and PRC for T1 and T2.

T1 T2
ROC PRC ROC PRC

MiRFinder 0.992* 0.945 0.772 0.106*

miPred 0.991 0.976* 0.707 0.024

RNAmicro 0.858 0.559 0.886* 0.054

ProMiR 0.974 0.801 0.711 0.035

RNAfold 0.964 0.670 0.706 0.015

Area under the curve (AUC) scores of ROC and PRC curves on datasets T1 and T2. The best AUC score in each column is marked with an asterisk (*).

doi:10.1371/journal.pone.0118432.t005
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plot allows for a quick and intuitive judgment of classifier performance, since it shows the
tradeoff between the most relevant measures, precision and recall. The PRC plot in Fig. 7B also
shows that all classifiers clearly distinguish themselves from a random classifier, indicated by
the grey horizontal baseline. AUC (PRC) scores (Table 5) agree with the order of performance
established in the PRC plot, but, being summaries of whole curves, cannot express the change
of performance over the range of recall values.

Re-analysis: PRC reveals very poor performance of all tools when tested
on T2
ROC on T2. Fig. 7C shows a picture very different to Fig. 7A, which has to be attributed to dif-
ferences in test data. RNAmicro is now clearly leading over a wide range of FPRs, although
MiRFinder is stronger in the early-retrieval area. While in the mid-field of FPRs all methods
show good performance, with RNAmicro showing very good performance, TPRs are low at
small FPRs. In addition to the general difficulty with ROC plots of judging practical perfor-
mance, Fig. 7C requires a decision about which areas of FPR are relevant and acceptable. A
viewer might be tempted to be happy about the mid-FPR-field performance, not realizing that
because of the strong imbalance of the data these FPRs could translate into large numbers of
false-positive predictions. AUC (ROC) scores (Table 5) establish RNAmicro as the clear winner
in this performance contest, naturally failing to express the change of performance over the
range of FPR values, especially, in this case, in the early-retrieval area.

PRC on T2. Fig. 7D dramatically demonstrates that classifier performance deteriorates
strongly under this test set. Over the whole range of recovery rates, all methods except MiRFin-
der have very low precision values, questioning their practical utility. MiRFinder performs rela-
tively reasonably, with not extremely low precision at a not extremely low recovery rate, for
example at 0.25/0.25. While the ROC plot in Fig. 7C makes an innocent impression, the PRC
plot in Fig. 7D reveals the bitter truth. In the practically relevant measure of precision, all meth-
ods except MiRFinder have performances that are close to the performance of a random classi-
fier, which is indicated by the grey horizontal line. Furthermore, the random-classifier baseline
in Fig. 7D is lower than the one in Fig. 7B, expressing the stronger imbalance of the test data
and the potential difficulty of constructing good classifiers. AUC (PRC) scores (Table 5) agree
with the PRC plot in their ranking of the candidates, but, again naturally, cannot capture the
variation of MiRFinder performance over the range of recovery rates.

Re-analysis: PRC is more intuitive than other measures when tested on
T1 and T2
CROC and CC.We also evaluated the five tools with CROC and CC, again on T1 and T2 (see
Fig. A: A-D in S1 File). When compared to the ROC plots, the CROC plots (Fig. A: A-B in S1
File) show better resolution in the early-retrieval area, but are similarly unsuitable for a quick
judgment of practical relevance. The interpretation is even more difficult, since the transforma-
tion function f has to be taken into account, although this could be remedied by annotating the
x-axis with the original FPR values. As the ROC plots, the CROC plots do not show the full ex-
tent of performance deterioration under the T2 test set either. The same is true for the cost
curves (Fig. A: C-D in S1 File), which are additionally unintuitive without a good understand-
ing of NE[C] and PCF (+).

Summary of the re-evaluation. The results of our re-analysis clearly demonstrate the ad-
vantages of PRC against ROC. PRC plots show the practically relevant measures, precision and
recall, of which precision is particularly important because it measures the fraction of correct
predictions among the positive predictions. PRC plots express the susceptibility of classifiers to
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imbalanced datasets with clear visual cues. PRC plots are also useful for estimating the difficul-
ty of creating a good classifier, since the position of the random baseline depends on the ratio
of the numbers of positive and negative instances.

Conclusion
ROC is a popular and strong measure to evaluate the performance of binary classifiers. Howev-
er, it requires special caution when used with imbalanced datasets. CROC, CC, and PRC have
been suggested as alternatives to ROC, but are less frequently used. In our comprehensive
study, we show the differences between the various measures from several perspectives. Only
PRC changes with the ratio of positives and negatives.

With the rapid expansion of high-throughput sequencing technology, the number of studies
with machine leaning methods will likely increase. Our literature analysis suggests that the ma-
jority of such studies work with imbalanced datasets and use ROC as their main performance
evaluation method. We have shown here that, unlike ROC plots, PRC plots express the suscep-
tibility of classifiers to imbalanced datasets with clear visual cues and allow for an accurate and
intuitive interpretation of practical classifier performance. The results of our study strongly
recommend PRC plots as the most informative visual analysis tool.
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