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Abstract
Wolves have returned to Germany since 2000. Numbers have grown to 209 territorial pairs in 2021. XGBoost machine
learning, combined with SHAP analysis is applied to predict German wolf pair presence in 2022 for 10 × 10 km grid cells.
Model input consisted of 38 variables from open sources, covering the period 2000 to 2021. The XGBoost model predicted
well, with 0.91 as the AUC. SHAP analysis ranked the variables: distance to the closest neighboring wolf pair was the main
driver for a grid cell to become occupied by a wolf pair. The clustering tendency of related wolves seems to be an important
explanatory factor here. Second was the percentage of wooded area. The next eight variables related to wolf presence in the
preceding year, except at fifth, eighth and tenth position in the total order: human density (square root) in the grid, percentage
arable land and road density respectively. Other variables including the occurrence of wild prey were the weakest predictors.
The SHAP analysis also provided crucial added value in identifying a variable that had threshold values where its
contribution to the prediction changed from positive to negative or vice versa. For instance, low density of people increased
the probability of wolf pair presence, whereas a high density decreased this probability. Cumulative lift techniques showed
that the model performed almost four times better than random prediction. The combination of XGBoost, SHAP and
cumulative lift techniques is new in wolf management and conservation, allowing for the focusing of educational and
financial resources.
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Introduction

The wolf (Canis lupus) is rapidly recolonizing Europe
(Chapron et al. 2014; Kuijper et al. 2016), with the wolf
population in Germany having a key role in this develop-
ment (Jarausch et al. 2021). In 2000, the first successful
reproducing wolf pair was observed at the Muskauer Heide
in Saxony (Mideast Germany) (DBBW 2023). The presence
of wolf pairs in German territories has been collected and
documented by the German Dokumentations- und Bera-
tungsstelle des Bundes zum Thema Wolf (DBBW 2023).
Their data show a steady increase in the number of wolf pair
territories, with 209 wolf territories in 2021. After the
recolonization in Germany, reproducing wolves settled in
Denmark in 2017 (Naturhistorisk museum Aarhus 2023),

The Netherlands in 2018 (Jansman et al. 2021) and Belgium
in 2019 (Gouwy et al. 2019). A wolf pair lives and repro-
duces in a territory which provides food and rest. The young
wolves may leave the parental territory to settle elsewhere
(Mech and Boitani 2003). Wolves may inhabit areas close
to human settlements and roam in these areas. In the
countries mentioned above, settled wolves are seen during
the day and within built-up areas. In addition, wolves may
kill livestock, though 18% of identified wolves in the
Netherlands did not (van Liere et al. 2021). The proximity
of a large predator to humans and livestock leads to social
unrest and intolerance towards the protection of wolves. It is
therefore important to understand the wolves’ preferences
for settlement and to predict where that might happen in
new areas. Machine learning models are useful to this end,
but there is often a trade-off between the predictive power
and the transparency of the analyses. Therefore, this study
proposes a novel approach which resolves this trade-off,
namely by combining a model with high predictive power,
such as XGBoost (eXtreme Gradient Boosting) with a
SHAP (Shapley Additive Explanations exPlanations)
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analysis that provides the possibility of interpreting the
importance and influence of variables.

A growing body of literature describes the use of
machine learning in various ecological subfields due to their
utility in capitalizing on big data and their potential for
understanding the processes underlying ecological patterns
(Tuia et al. 2022). Artificial Neural Network (ANN) mod-
eling has for instance been applied to wolf distribution
patterns in Portugal (Bessa-Gomes and Petrucci-Fonseca
2003). However, ANN models may have difficulty ren-
dering absence data (areas without wolves recorded) and
only work on small datasets when complying with specific
requirements and data preprocessing (Pasini 2015). The
maximum entropy-based machine learning model MaxEnt
has a solution to these problems; it is capable of only
working with recorded presences. This MaxEnt machine
learning model has been applied to the distribution of
wolves in Central Italy (Bassi et al. 2015), Germany (Kra-
mer-Schadt et al. 2020) and in the USA in an ensemble of
various models (Gantchoff et al. 2022; van den Bosch et al.
2022). One of this model’s drawbacks lies in its limitation
on the number of variables when working with data char-
acterized by a low record (presence) count. A high ratio of
input variables to records could pose challenges for the
model, potentially causing it to emphasize irrelevant spe-
cifics while struggling to discern meaningful patterns
(Halvorsen 2013). Furthermore, ecologists need to identify
environmental or temporal variables that influence ecolo-
gical patterns linked to distribution data, which implies that
the interpretability of the model is crucial. To be able to
interpret the results of the MaxEnt model, extensive pre-
processing of the data is required. It expects users to
minimize correlation among predictors and to identify
variable-target-relationship shapes prior to model building.
This is caused by the fact that the complex variables created
by MaxEnt are often already highly correlated (Bassi et al.
2015). In this study, XGBoost is suggested as an alternative,
as it does not require extensive preprocessing of variables
and has few limitations regarding the number of variables
added to the model, as well as their correlations. This study
in ecological modeling takes advantage of XGBoost’s
quality and specifically uses a large number of variables
based on open sources. Only open data sources and open
source packages were used in our code to build the
model; this code is also publicly available (https://dev.a
zure.com/Cmotions/Projects/_git/predict-wolf-presence).
This approach has the added advantage that the methods are
fully transparent and accessible, and the results can be
easily reproduced or extended.

XGBoost is a powerful and widely used supervised
machine learning algorithm that belongs to the ensemble
learning category. In ensemble learning the final model is
composed of multiple separate models. Furthermore,

XGBoost is based on the gradient boosting framework and
aims to create a robust and accurate predictive model.
XGBoost employs a boosting technique that sequentially
combines decision trees in an additive manner. It optimizes
a loss function by iteratively minimizing the residuals of the
previous model, meaning each new decision tree focuses on
improving on the weakness of the previous decision tree,
effectively improving the overall model’s performance.
XGBoost incorporates regularization techniques to mitigate
overfitting and enhance generalization and employs
advanced features like parallel computing and tree pruning
to improve efficiency. XGBoost is highly regarded for its
exceptional predictive accuracy and its ability to handle
diverse types of data, including spatial and temporal infor-
mation (Chen and Guestrin 2016). Thus, XGBoost is used
in this study, but still, like many other advanced machine
learning models, XGBoost is a black box. Therefore,
XGBoost is combined with a powerful framework for
interpreting predictive models: SHAP.

SHAP is a method used to explain predictions of various
machine learning models in a uniform way. It assigns
importance values to each input variable. The framework is
based on game theory concepts, specifically the idea of
Shapley values, which allocate contributions to each player
in a cooperative game. Similarly, when used in ecology, it
provides variable importance measures that allow
researchers to interpret the contributions of individual
variables towards the model predictions (Lundberg and Lee
2017).

To evaluate the predictive power and usability of the
model created by XGBoost, the Receiver Operator Curve
(ROC) and its Area Under the Curve (AUC) are used. The
ROC plots the True Positive Rate versus the False Positive
Rate, whereas the AUC metric summarizes the model
performance in one statistic. ROC and AUC are used to
compare overall predictive performance between models
and with expectations without a predictive model (Kuhn
and Johnson 2013). Since the ROC and AUC only provide
an overall performance score, they don’t reveal how well
the model performs on specific segments of the grid cells.
Therefore, the cumulative gains and cumulative lift plots
were added. These are techniques used in branches like
marketing and finance to improve the evaluation of the
predicted values by the model (Nagelkerke 2022).
Cumulative lift and gains allow for a better understanding
of the full distribution of model probabilities in a popu-
lation, identifying segments in the population where the
model performs exceptionally well. These techniques
indicate to what extent the actual values (in our case, the
presence of wolf pairs) are within the population segments
with the highest predicted probabilities (cumulative gains)
and how much better the model performs for those seg-
ments as compared to not using any model (cumulative
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lift). These insights can be used to turn into actionable
insights, for instance, in marketing, and can help to
identify segments of the customer base where a marketing
campaign will be most effective, improving resource
allocation. In our study, this would translate to selecting a
specific subset of grid cells with high probabilities of
predicted wolf pair presence. Such selection can be
motivated, for instance for future management and
resource allocation in specific areas.

This study aims to demonstrate the significance of the
combination of XGBoost and SHAP modeling, as well as
the importance of model evaluation techniques, to improve
the prediction of the presence of wolf pairs in Germany,
which is essential for wolf management and protection.

Methods

Multivariate modeling and analysis of variables possibly
contributing to the prediction of wolf pair settlement in
Germany was performed using XGBoost (XGBoost pack-
age 1.7.5 2023, https://pypi.org/project/xgboost/) combined
with SHAP calculations (SHAP package 0.41.0; 2023,
https://pypi.org/project/shap/; Lundberg et al. 2020). In
addition, common exploratory data analysis regardless of
correlations with other variables was performed by calcu-
lating box plots for each variable.

Model

The XGBoost model is used from the Python packages
xgboost and scikit-learn (Pedregosa et al. 2011; Scikit-learn
package 1.2.2 2023, https://pypi.org/project/scikit-learn/).
The hyperparameters are Bayesian optimized with the
Python package hyperopt (Bergstra et al. 2015; Hyperopt
package 0.2.7 2023, https://pypi.org/project/hyperopt/).
Optimal values of the hyperparameter optimization as used
in the XGBoost model are given in Table 1. The Python
code of this study is online available (https://dev.azure.com/
Cmotions/Projects/_git/predict-wolf-presence).

To ensure a systematic evaluation of the model’s per-
formance while preserving the integrity and representa-
tiveness of the data, the produced dataset is split into three
parts: training, testing, and validation. The training and
testing dataset cover all data from the grid cells for the
period 2000 until 2019, where this data is split randomly
such that 75% of the data is part of the training dataset and
25% is part of the testing dataset. The validation data set
covers all data for the period 2020 until 2021. Stratified K-
fold cross-validation with (K= 10) was used. For validation
the ROC curve with the related AUC metric and the
Cumulative Gains and Lift Curves from the Python package
modelplotpy (Modelplotpy package 1.0.0 2023, https://
modelplotpy.readthedocs.io/en/latest/) were used.

Analysis of the relative significance and effect of the
applied variables on the model’s prediction was done with
SHAP methodology from the eponymous SHAP Python
package. With SHAP, we can identify the corrected rela-
tionship between input and target variable, showing that the
relationship can be both positive and negative depending on
the input variable’s value.

Grid cells

A map of Germany was loaded in QGIS, overlaid with a
new layer with 10 × 10 km grid cells. This new layer was
retrieved from the EUROSTAT data (open source data
EUROSTAT 2020, https://ec.europa.eu/eurostat/web/gisco/
geodata/reference-data/administrative-units-statistical-units/
countries, accessed 2023). The combination was exported
as a new single geospatial (shape) with Germany divided
into grid cells (n= 3867). The exact grid cell area was
calculated for those grid cells (n= 564) that were located
adjacent to the foreign border and the German territorial
seas.

Presence of wolves

For the presence of wolf pairs in German territories data
was used that was collected by the DBBW since 2000 (open

Table 1 Optimal values of
hyperparameters with the
applied search space for
XGBoost modeling in this study

Hyperparameter Search space Optimal value

learning_rate log-spaced array: 1000 values ranging from 0.005 to 0.5 0.0494

max_depth sequence of integers ranging from 5 to 31 (inclusive); step size 1 17

min_child_weight uniform distr. of discrete values between 1 and 10 (inclusive) 5

gamma [0.5, 1, 1.5, 2, 5] 1

subsample uniform distr. of values between 0.1 and 1 (inclusive); step size 0.01 0.64

n_estimators discrete values from 20 to 200 (inclusive); step size 5 34

colsample_bytree uniform distr. of values between 0.1 and 1 (inclusive); step size 0.01 0.72

reg_alpha [1e–5, 1e–2, 0.1, 1, 10, 100] 0

reg_lambda [1e–5, 1e–2, 0.1, 1, 10, 100] 4
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source data DBBW, https://www.dbb-wolf.de/home,
accessed 2023). Recordings of DBBW also indicate whe-
ther there is reproduction, including data on the number of
pups and yearlings, or whether there is a settlement of a
single adult wolf or a non-reproducing pair. Wolf territories
are indicated for each year by circles with a diameter of
16 km, resulting in an area of 200 km2; the approximate size
of a German wolf territory (Kramer-Schadt et al. 2020). The
center of the circle is the center of a minimum convex
polygon of repeated confirmed wolf presence in an area
(Reinhardt and Kluth 2015; Reinhardt et al. 2017) and is
considered the territorial center. DBBW only provides wolf
territory locations as a geographical image. Therefore,
recognizable map variables were determined that aligned
with North-South and West-East lines through the circle
center and were copied to Google Earth, which gave the
latitude and longitude values at the cross of the lines. The
estimation of the territory center was precise at 1 km.
Subsequently, these estimations of territory location were
associated with the grid cells. One grid cell might have been
associated with multiple territories.

The target variable in this study is the first registered
presence of a wolf pair in a grid cell, meaning that no other
wolf pairs have been present in this specific grid cell before.
Its value is either 1 (presence) or 0 (no presence). The
presence of other wolves was analyzed in a spatial and
temporal dimension. Spatially, distances were calculated
between the grid cell center and the closest neighboring
wolf pair in the same year. Temporally, a summation was
performed of the number of adult wolves present in the year
preceding the first presence in a grid cell within a 25 km
radius from its center, which is the median dispersion dis-
tance of female wolves (Jarausch et al. 2021). The same was
done for a 50, 75 and 100 km radius and was subsequently
repeated for the number of pups, yearlings and the total
number of wolves respectively.

Habitat variables

We aimed to maximize the number of possibly relevant
variables included, to prevent missing a factor that may be
relevant for wolves. The selected variables were based on
previous studies in Germany and other European countries
(Blanco et al. 1992; Massolo and Meriggi 1998; Jȩdrze-
jewski et al. 2000; Glenz et al. 2001; Eggermann et al.
2011; Ordiz et al. 2020).

The percent of a grid cell was calculated as being cov-
ered by arable land, artificial construction and sealed areas,
bare surface, grassland, inland water, permanent crops,
scrubs and wooded area, using the Land Use and Coverage
Area frame Survey (open source data LUCAS from
EUROSTAT, https://ec.europa.eu/eurostat/web/gisco/geoda
ta/reference-data/administrative-units-statistical-units/

countries, accessed 2023). LUCAS data points are asso-
ciated with the intersections of a 2 km grid. These points
were mapped onto the grid cells in this study and the per-
centage of total points within each grid cell was determined
as an estimate of the percentage coverage. In addition,
polygons defining Natura 2000 Areas (open source data
European Environment Agency 2021, accessed 2023) were
overlaid onto the grid cells and the percentage of a grid
cells’ area covered by Natura 2000 areas was calculated.

The human population density in each grid cell was
retrieved from the Humanitarian Data Exchange (open source
data HDX 2019, https://data.humdata.org/dataset/germany-
high-resolution-population-density-maps-demographic-estima
tes, accessed 2023) The retrieved data represented the den-
sities per km2 for the year 2019. The assumption was that
these were indicative of (differences between) grid cells
across this study’s whole period. All the data points that could
be mapped to the corresponding grid cell were aggregated.
Their values were summed, and the sum’s square root was
taken to estimate human population density in a grid cell.

The presence of German railways and roads was down-
loaded from DIVA-GIS (open source data DIVA-GIS 2011,
http://www.diva-gis.org/gdata, accessed 2023). This data
has not been updated since they were added in 2011. The
assumption was that no significant change in road and
railways presence had occurred since 2011 for most grid
cells. In QGIS, the grid cell polygons were merged with the
roads and railways(multi)line strings. Roads and railways
were cut at the grid cell borders and the total length of
(multi)line strings (in km) was calculated within each grid
cell. The resulting export was a (shape)file suitable for
Python, where we calculated the density of railways and
roads per grid cell in km per km2.

Estimations of the presence of wildlife species in a grid
cell were based on observed occurrences in Germany as
registered in the Global Biodiversity Information Facility
(GBIF 2023, https://www.gbif.org/occurrence/download/
0224656-23022409555607495556074, accessed 2023).
However, registrations were absent for some species for
several years and lacked consistency for the wildlife species
in this study until 2021. Therefore, data were selected and
cumulated, covering observed occurrences between January
2021 and April 2023. There was a variation in the precision
of these latitude and longitude registrations, and it was also
considered that spotted animals are mobile. Uncertainties
larger than 5 km involved between 0.5 and 17.5% of the data.
Thus, 82.5% of the locations range within 5 km. Therefore, a
circle was adopted with a radius of 5 km from the registered
location. These circles were superimposed onto the grid cells.
An animal’s presence was then defined as the percentage of
overlap for a given grid cell. Due to the mentioned limita-
tions of this open source data, we were only able to
approximate the presence of wildlife in a grid cell.
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Wildlife prey of German wolves is mainly roe deer
(Capreolus capreolus), but also other species are predated
such as red deer (Cervus elaphus), wild boar (Sus scrofa),
mouflon (Ovis musimon), and European hare (Lepus euro-
paeus) (Ansorge et al. 2006). Polish studies mention fallow
deer (Dama dama), Alpine ibex (Capra ibex) and beavers
(Castor fiber) (Nowak et al. 2011; Reinhardt et al. 2021;
Witek et al. 2023). Densities of roe deer and red deer were
found to be the main drivers for wolf settlement in the
Western Alp region of Switzerland (Roder et al. 2020). All
European species with the same genus as mentioned in
these sources were selected in the GBIF database. However,
data on beavers (Castor fiber) was not available in the GBIF
database. The raven, Corvus corax, was also selected as
wolf and raven play together and facilitate each other’s prey
or carcass finding (Stahler et al. 2002; Erdas 2020). Den-
sities of domestic species were not included, as they could
not be retrieved from an open source database in Germany.

Results

Model

The training, testing, and validation datasets were com-
prised of 38 input variables (appendix A in the supple-
mentary materials) and the target variable. The training and
testing dataset covered the data from 2000 to 2019 and
included data for 180 grid cells with wolf pair occupation.
The validation dataset covered the data in the last two years,
2020 and 2021. In this period, there were 43 grid cells with
first time wolf pair occupation. Therefore, the total number
of grid cells with past or current presence(s) reached a
cumulative number of 223 grid cells in 2021. The AUC of
the optimized XGBoost model is 0.91 for the test data and
0.81 for the validation data (Fig. 8 in the supplementary
materials).

Grid cells and the presence of wolves

A total of 1180 counts of wolf pair presence applied for the
period 2000–2021. In many cases the presence was found in
the same grid cells, resulting in 223 unique grid cells with wolf
pair settlements. The prediction of the presence of wolf pairs
by the XGBoost model is provided in Fig. 1. It shows for each
grid cell the probability of wolf pair settlement in 2022, the
year following the research period. The 223 grid cells where
wolf pairs were already present before were not included in the
prediction but are presented as gray dots instead.

The predicted presence in 2022 does not expand strongly
towards the far western region (near Netherlands and Bel-
gium) or northern Germany (near Denmark) but remains
dominant in mid-northern and northeastern Germany:

Sachsen, Sachsen-Anhalt, Brandenburg, eastern Nie-
dersachsen and Mecklenburg-Vorpommern (Fig. 1). The
prediction also shows that the isolated groups of wolf pair
presence in the southern half of Germany expand.

During the years 2020 and 2021, a selection of 10% of
the grid cells exhibiting the highest in probability of wolf
pair occupancy, represented approximately 35% of all grid
cells occupied by wolf pairs (Fig. 2). Conversely, when no
model would have been used, it could be expected that 10%
of the cells would show occupancy of 10% of all wolf pairs.
This results in a cumulative lift (Fig. 9 in the supplementary
materials) of about 375% for the 10% grid cells with the
highest probability of wolf pair presence. Thus, for these
grid cells, the model performs almost four times better than
in the case of random selection of areas.

Habitat variables and SHAP values

Average SHAP values were established for all variables in
the XGBoost model (Fig. 3), which shows the relative
importance of these variables for the prediction. The dis-
tance to the closest neighboring pair of wolves and the
percentage of wooded area are most important in predicting
the first presence of a pair of wolves in a grid cell. The next
eight all relate to presence of wolves in the preceding year,
except three on fifth, eighth and tenth position in the total
order: the human population number (square root) in the
grid, percent of arable land and road density respectively.
Then there are several variables, including those related to
wildlife species, that result in SHAP values that are among
the lowest and therefore the weakest predictors.

The influence of the distance to the closest neighboring
pair of wolves can be both positive and negative, depending
on the value for this variable. The influence is positive for
small distances approximately between 10 and 40 km but
negative for larger ones (Fig. 4). SHAP values for distances
larger than 100 km can be found in Fig. 10 in the supple-
mentary materials.

Woodland cover in a grid cell can also have both a
positive and a negative impact on wolf pair presence. The
SHAP values are positive for coverage higher than
approximately 40%. Such percentages of cover therefore
positively impact the probability that wolf pairs will occupy
that area (Fig. 5). Lower cover percentages correspond to
negative SHAP values and reduce this probability. The
percentage of arable land cover mirrors this result. Here,
SHAP values are positive with arable land cover lower than
40% (Fig. 11 in supplementary materials).

Examples of the impact of presence of other wolves on
SHAP values, that is of adult wolves within a 25 km radius
(Fig. 12 in the supplementary materials) and pups within a
50 km radius (Fig. 13 in the supplementary materials) pre-
ceding the year of first presence of a wolf pair in a grid cell,
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show positive influences on the probability of subsequent
occupation of this grid cell, though a negative one for less
than 10 pups within a 50 km radius.

Human presence has both a positive and a negative effect
on chances of wolf pair presence (Fig. 6). If the square root
of human population density in a grid cell is lower than 80

Fig. 1 Probability of wolf settlements in grid cells covering Germany for the year 2022 (greener corresponds to a higher probability) for grid cells
with no previous wolf pair presence. Grid cells with a known previous presence of wolf pairs are also presented (gray dot)
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per grid cell, which can be translated to a human population
density of 64 per km2, the SHAP value is positive and the
probability for a wolf pair to be present is enhanced. Higher
human densities relate to negative SHAP values, implying
reduced chances of wolf pair presence.

Regarding infrastructural variables, relatively weak
SHAP values for road densities and one of the lowest values
for railway densities are found. Road densities of 0.16 km
per km2, and higher have a negative impact on SHAP
values and therefore on the probability of presence of a wolf
pair (Fig. 7).

Observed occurrences of wildlife species differ strongly
(Table 2), but roe deer, which wolves strongly prefer as
prey, is spotted the most. Also, hares and ravens are fre-
quently spotted.

Compared to other wildlife species, the occurrence of roe
deer in a grid cell has on average the highest average SHAP
value, though it still is a weak predictor. The SHAP values
are positive and therefore contributing to the probability of
presence of a wolf pair in a grid cell if the relative area in
which a roe deer is seen is less than 5% (Fig. 14 in the
supplementary materials). Conversely, the SHAP values are
negative and reduce the probability of the presence of a
wolf pair if the relative area in which a roe deer is seen is
greater than 40%.

Habitat variables and box plots

For each input variable in the training dataset, across the
years 2000–2019 boxplots were calculated for grid cells
with and without a wolf pair present (target value 1 and 0
respectively) (Fig. 15 in the supplementary materials).

Comparison of boxplots, particularly medians and
interquartile distance, indicates that for grid cells where
wolf pairs are or have been present, the distance to another
wolf pair is smaller compared to grid cells without a wolf
pair. In the year preceding occupation of a grid cell, the
number of wolves (total and per age category: pups, year-
lings, adults) is generally higher than random at different
distances from the grid cell. The percentage of cover with
forest or Natura 2000 is greater in grid cells with a (former)
wolf pair occupancy than in grid cells without. The reverse
is true for the percentage of arable land cover and the
(square root) of the human population. The presence of prey
animals is either not different between cells with or without
presence of wolf pairs or was lower in cells with wolf pair
presence (roe deer and hare). When all prey animals are
taken together, their presence is lower in case a wolf pair
occupies a grid cell. The presence of raven or densities of
roads or railways do not differ between cells with or without
wolf pairs present.

Fig. 2 The percentage of actual presence of a wolf pair as cumulative gains of the XGBoost model in this study (solid line) and a perfect model
(dashed line) as related to the percentage of grid cells ranked by the model’s predicted probability of wolf pair presence from high to low
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Discussion

Model

The XGBoost model used in this study included 38 vari-
ables (appendix A in the supplementary materials) based on
open source data sources and performed well with an AUC
of 0.91 on the test data. This is a high AUC value, espe-
cially when considering that we worked with a binary-
dependent variable covering the settlement of wolf pairs in
223 (6%) out of 3867 grid cells. Moreover, this

performance estimate is distinctly better than for instance
the 0.76 of the MaxEnt model predicting German wolf
distribution with cross-validation, as used by Kramer-
Schadt et al. (2020). Thus, this study shows that a pre-
ference for XGBoost is justified, as it requires very little
data preparation and has no real limitations regarding the
number of input variables. Our analyses also show that the
model properly generalizes (AUC value of 0.81 for the
validation dataset) and is therefore capable of predicting
occupation for areas in periods it is not trained on. The
predicted occupation by wolf pairs in 2022 remains

Fig. 3 Average SHAP values for all variables used in the XGBoost model relating to their relative significance for the model prediction
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dominant in mid-northern northeastern Germany (Sachsen,
Sachsen-Anhalt, Brandenburg, eastern Niedersachsen and
Mecklenburg-Vorpommern), while isolated groups in the
southern half of Germany may expand. For these areas the
cumulative gains and cumulative lift plots prove useful in
evaluating the predictive quality of the model for the areas
with the highest presence probabilities according to the
model. The plots show that when the model is used to select
the top 10% grid areas with the highest probability, these
areas account for 35% of all expected presence of wolf pairs
in the coming period and that for these areas, the prediction
is almost four (3.75) times better than randomly selected
grid areas. Therefore, wolf management, resources or
research programs can be more focused in the mentioned
states and areas in Germany. For instance, involvement of
the darkest green grid cells in Fig. 1 may support man-
agement to locally educate people about coexistence with
wolves, to support farmers to protect husbandry animals

against wolf attacks, or to research development of habits,
habitat use, and relations between wolf packs.

SHAP

The SHAP application has had an important added value, as
it ranks the significance of variables for the black box model
and illustrates how they contribute to the prediction. SHAP
analysis also allows to identify threshold values to dis-
criminate between positive and negative effects, This pat-
tern could not as easily have been detected by a standard
comparison, for instance of variable estimates between grid
cells with or without wolf pairs or by linear modeling of
variables. When using other techniques, such as regression-
based approaches, much more effort is required to model
the impact of variables. One needs to explicitly specify the
shape of the relationship (linear, quadratic,..), interactions
and isolate the effect of the variable from correlated

Fig. 4 The impact of the distance (in km) of other wolves to the settlement of a new wolf pair on SHAP values
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variables. In our approach – combining XGBoost with
SHAP - nonlinear relationships between a variable and the
target and correlations between variables are covered by
design by XGBoost. SHAP enables interpretation of the
relationship between variables and the target, controlling for
the impact of other variables.

SHAP identified key drivers to predict the likelihood of
wolf pair presence. The most important variable was the
distance to the closest neighboring wolf pair. Although
boxplots showed that short distances of cells with other
wolves and the presence of wolves in the preceding year
related to grid cells with a wolf pair, it is the SHAP analysis
that values the magnitude of its significance for the pre-
diction. A distance of about 10–40 km to a wolf pair already
present contributes to a high probability that a wolf pair will
be present in a previously empty grid cell. The significance
of wolf presence was also confirmed by the findings of an
increased chance of a grid cell occupation when wolves

(adult, yearlings or pups) were present at 25 km a year
before. For pups, a relatively strong SHAP value was also
found for a distance of 50 km.

The presence of other wolves as a main variable supports
the common notion that wolf packs tend to cluster over time
(Mech and Boitani 2003). Patchiness of suitable habitat is
often mentioned as one of the explanations for such clus-
tering, especially the presence of forest. In our study, the
forest cover percentage is indeed higher in grid cells with
wolf pair establishment than in ‘empty’ grid cells and it has
also the second highest average SHAP value. The sig-
nificance of forest cover to the probability of wolf presence
is consistent with other studies on the distribution of wolves
in Europe (Massolo and Meriggi 1998; Jȩdrzejewski et al.
2000; Kramer-Schadt et al. 2020; Cimatti et al. 2021; Mayer
et al. 2022; Marucco et al. 2023) and North America
(Mladenoff et al. 1995, 2009; Oakleaf et al. 2006; Smith
et al. 2016; Gantchoff et al. 2022). The SHAP analyses

Fig. 5 The impact of the percentage of woodland cover in a grid cell on SHAP values
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conducted in the current study enabled quantification:
probability of wolf pair presence starts to increase when
more than 40% of the area is forest.

However, forest cover as an explanation for the cluster-
ing of wolves can be questioned, as other studies report that
wolves inhabit a wide range of natural habitats (Mech and
Boitani 2003; Oakleaf et al. 2006; Mladenoff et al. 2009;
van den Bosch et al. 2022). The species is not specifically
tied to specific habitats, but may preferably select forest
areas and vice versa avoid arable land, areas with high road
densities, or areas with high human densities, as this would
relate to a reduced likelihood of human encounters
(Mladenoff et al. 2009; Reinhardt and Kluth 2015; Rein-
hardt et al. 2019). It is also argued that wolves do not
specifically prefer Natura 2000 protected areas and that
forests do not play a key role in the recolonizing of Ger-
many (Reinhardt and Kluth 2015; Reinhardt et al. 2019) and
the northern Great Lakes region in the USA (Mladenoff

et al. 2009). The estimation that forest cover is a less
important habitat feature than human density is also
assumed in other European and North American wolf stu-
dies (Smith et al. 2016; Cimatti et al. 2021; van den Bosch
et al. 2022; Marucco et al. 2023). Mayer et al. (2022),
however, could not identify human population density as a
significant variable. Also in our study, human density scores
below forest cover in average SHAP value and would
therefore be less significant than wood cover in predicting
wolf presence. Why this is, demonstrates the importance of
adding a SHAP analysis: human density has both a positive
and a negative impact on wolf pair settlement. At densities
lower than 64 per km2, the SHAP value is positive and the
probability for a wolf pair to occupy a new area is even
enhanced. Only a higher human population density of more
than 64 per km2 negatively affects the likelihood of an
occupancy by a wolf pair in a new area. This is consistent
with the results of the model of Van den Bosch et al. 2022,

Fig. 6 The impact of the square root of human population numbers in a grid cell on SHAP values

Environmental Management



which estimated a sharp decline in wolf presence likelihood
at human densities of 50 to 75 per km2. The density of 64
people per km2 is not extremely low in Germany and relates
to rural areas with either much agriculture or nature areas.
For comparison: the population density in Germany can be
even lower: the districts (Landkreis) of Prignitz (Branden-
burg), Altmarkkreis Salzwedel (Sachsen Anhalt) and
Ostprignitz-Ruppin (Brandenburg) and Lüchow-Dannen-
berg (Niedersachsen) are listed as least populated in Ger-
many with less than 40 inhabitants per km2.

Concerning the clustering of wolves, even when
assuming that patchy human population settlement (towns
and villages) in Germany is most significant in predicting
wolf settlement, it remains difficult to understand how this
explains the significance of the specific distances to other
wolves found in the current study (between 10 and 40 km

Fig. 7 The impact of the density of roads in a grid cell in km per km2 on SHAP values

Table 2 Number of occurrences of wildlife species that may relate to
wolf presence observed in Germany between January 2021 and April
2023 as listed in the Global Biodiversity Information Facility

Species Number of observed occurrences

Sus scrofa (wild boar) 1096

Ovis gmelini (mouflon) 97

Lepus europaeus
(European hare)

6542

Lepus timidus (mountain hare) 2

Cervus elaphus (red deer) 520

Cervus nippon (sika deer) 19

Dama dama (fallow deer) 583

Capra ibex (Alpine ibex) 25

Capreolus capreolus (roe deer) 12,614

Corvus corax (common raven) 11,728
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between locations where wolves are present, or of the pre-
sence of wolves in the preceding year within 25 km).
Therefore, there is more to the prediction of wolf pair
presence than human disturbance. Firstly, wolves may use
their territory differently in successive seasons or years
(Jȩdrzejewski et al. 2000) and therefore the center of the
territory can move. This may (partly) explain the sig-
nificance of the distances mentioned. In addition, cues by
which wolves detect and recognize each other, such as from
howling, scent marking in and at borders of the territory,
may also explain such specific distances. Indeed, wolf kin
tend to stay close: Caniglia et al. (2014) showed that within
17 km wolves are more closely related than on average
across the population. Jarausch et al. (2021) found that in
particular female dispersers or female offspring settled as
breeding pack adjacent to the pack they left with a median
dispersal distance of 25 km. The significance of distances to
other wolves in the current SHAP analysis is in the range of
the mentioned 17 and 25 km.

The SHAP analysis showed that road densities from
0.16 km per km2 onwards would contribute negatively to
the probability of wolf pair presence in an area. Road
densities up to 0.7 to 1.1 appear to be possible for areas
occupied by wolves (Mladenoff et al. 1995, 2009;
Reinhardt et al. 2019; Gantchoff et al. 2022). However,
road density had a relatively low contribution to the
prediction. This result is also found by Reinhardt et al.
(2019) and in other areas with expanding, recovering
wolf populations like the north American western Great
Lake areas (Gantchoff et al. 2022) or the northern Rocky
Mountains (Oakleaf et al. 2006). The significance of road
density is site specific (Oakleaf et al. 2006). Low road
density in the American northern Great Lake areas used
to be a key predictor for wolf settlement during first
colonization (Mladenoff et al. 1995), but its significance
declined after distribution expanded and wolves also
settled in habitat that differed from the initial one (Mla-
denoff et al. 2009).

SHAP analyses also showed that the chance of observing
prey animals relates to the weakest predictors for wolf pair
presence, including roe deer. This result seems opposite to
the findings that wolves live in a prey rich environment with
wild ungulates as their primary prey (Jȩdrzejewski et al.
2000; Mech and Boitani 2003; Gazzola et al. 2005; Wagner
et al. 2012; Kittle et al. 2017) and that wild prey can predict
the presence of wolves (Oakleaf et al. 2006; Falcucci et al.
2013; Grilo et al. 2019; Roder et al. 2020). Nevertheless,
when a prey species is abundant, there may be no difference
in prey density between areas occupied by wolves com-
pared to neighboring unoccupied areas. For example, Mla-
denoff et al. (1995) found both occupied and unoccupied
areas had white-tailed deer (Odocoileus virginanus) den-
sities of 8.4 to 8.6 per square km. Moreover, locations

where prey can be caught easily can be more important than
prey abundance itself (Zabihi-Seissan et al. 2022). In diet
studies of wolves in or from Germany, roe deer is the main
prey, but also red deer, wild boar, hares and rabbits (Wagner
et al. 2012; Van der Veken et al. 2021; Jarausch et al. 2021).
One explanation of the poor predictive power in the current
study could be that prey is abundant across most of the grid
cells. Germany is amongst the European countries with the
highest roe deer densities, as estimations in 2005 were 8.4
animals per square km (Burbaitė and Csányi 2009). Also,
the mere fact that wolves tend to cluster in Germany can
relate to a general abundance of prey. A second explanation
for the poor predictive power can be that prey can move
from the center to the edge of a territory (Mech et al. 1980;
Mech and Harper 2002). The avoidance behavior of the
prey species is a known effect of wolf presence on the
distribution of prey animals (Okarma 1995; Ripple et al.
2014; Kittle et al. 2017). A move of more than 5 km out of
the core can result in prey presence outside the grid cell. As
a result, cells not occupied by wolves but adjacent to the
center grid cell can have increased prey animal densities
compared to before wolf presence. This would be proble-
matic in recognizing the actual importance of prey occur-
rence on the prediction of wolf pair occupancy in a specific
grid cell. Indeed, the box plots showed that the chances of
observing prey animals either do not differ between the cells
with or without wolf pairs present or are lower in cells with
a wolf pair. The latter applies in particular for roe deer and
hare, which have been observed relatively frequently. It
should, however, also be considered that the weak pre-
dictive power of the presence of prey animals can be a
consequence of the quality of the open access data on prey
species used in the model. There were inherent limitations,
which are discussed below. Therefore, in this study, the
predictive power of the occurrence of prey species should
be interpreted carefully.

Open source data

Multiple sources of open data were used as input for the
model. Open source data allows researchers from different
disciplines to work on a broad range of research questions
and build on each other’s work (Roche et al. 2022). This
study demonstrates that the application of a state-of-the-art
model originating from the ´data science´ research field to
open source ecology data, generates information from new
angles, relevant to wolf conservation and management.
Despite possible disadvantages of such data such as
inconsistency and/or inaccuracy, as will be discussed
below, the model created in this study is good and usable in
practice: it has a high AUC on both test and validation data.
Moreover, it showed good results when we validated it
using data the model wasn’t trained on.
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The inconsistency of data applies to the presence of
wildlife species. Due to inconsistent registration across
years (years before 2021) in the Global Biodiversity
Information Facility (GBIF 2023), the occurrence data
were limited between January 2021 and April 2023. This
is a period well after the last year used to train the model.
To test the actual importance of prey densities in grid
cells on the subsequent probability of wolf pair settle-
ment, a follow-up model is suggested with annual data on
prey densities. Moreover, since improved GBIF data have
only been available and published since 2021, future
research can incorporate GBIF data that is collected over
a longer period of time (which is adequate for more
extensive analyses) and deliver more accurate predictions
of spatial and temporal relations between wolves and
their prey.

The inaccuracy of data from open data sources has dif-
ferent origins. Sources can be outdated, for example
regarding railway and road lengths in a grid. The effect of
assuming negligible change across years is therefore not
known until a comparison is made with annually updated
sources. Sources may also be inaccurate and biased. For
instance, the data sources used for prey and scavenger
species may be biased by faults in human observations and
varying degrees of observer coverage and intensity. Again,
comparison and correlation studies with objective standar-
dized monitoring (camera traps, systematic transect obser-
vations, trace density measurements etc.) are needed to
resolve the extent of inaccuracy. In addition, the assessment
of the center of a wolf pair territory was derived from a
polygon of observations which led to inaccuracy depending
on the number of observations. Its inaccuracy can be
assumed to be larger than the subsequent estimation in the
current study (with an accuracy of 1 km) of the center
illustrated at the DBBW-site, but these errors have been
systematic across all center assessments. Inaccuracies were
also introduced by choosing a geospatial resolution of
10 × 10 km when sources were either on a more granular
level but on a different projection or a less granular level
and had to be attributed to multiple 10 × 10 km grid cells. It
would be interesting to correct the mentioned inaccuracies
and bias by enhanced measurements and to test to what
extent the prediction improves.

The addition of not openly accessible data may also
improve the prediction. For instance, the location of
military areas relates to the stepwise distribution of
wolves (Reinhardt et al. 2019). Moreover, the presence
of domestic animals like sheep and goats is relevant, as
these species are the main target of wolves that kill
husbandry animals (Khorozyan and Heurich 2022). Also,
the presence of beavers is of interest, as wolves may
predate them too (Jȩdrzejewski et al. 2000; Reinhardt
et al. 2019).

Further research

Further research into the application of SHAP to the
XGBoost model is recommended, in particular regarding
SHAP’s ability to show variable significance even at the
level of a specific area (or grid cell). Effects of variables on
chances of wolf pair presence can significantly differ
between areas. Figure 16 in the supplementary materials
provides an example where a particular grid cell with a high
probability (Fig. 16b in the supplementary materials) of
wolf pair settlement provides a different order of the vari-
ables than another with a low probability (Fig. 16a in the
supplementary materials). This local fine-tuning allows
differentiation between variables that contribute to wolf
settlement probability and enables management to focus on
locally the most relevant ones.

Conclusions and perspectives

This study showed that XGBoost machine learning and SHAP
analysis can be effectively applied to geospatial and temporal
open source data. This approach is new and provides insight
into input variable importance and quality regarding the pre-
diction of wolf pair presence. XGBoost is amongst the best
models according to literature, which is shown in our study as
well, since it generated an AUC of 0.91. SHAP analysis
explained that a short distance to another wolf pair is the most
decisive variable predicting wolf pair presence. It also showed
that variables, such as wooded area coverage and human
population density, can contribute both positively and nega-
tively to the prediction of the presence of a wolf pair. Road
and prey densities, such as of roe deer, the wolves’ primary
prey, had poor contributions to the prediction of wolf pair
presence. Out of a total of 3867 cells of 10 × 10 km covering
Germany, 223 grid cells included presence of a wolf pair
between 2000 and 2021. Management can be fine-tuned by
selecting the 10% of grid cells with the highest predicted
presence probability for the subsequent year 2022, which
relates to a model performance almost four (3.75) times better
than random. The prediction is therefore important to prepare
for management instruments, such as education, and to locally
prepare for coexistence with recolonizing wolves.

The strategy to combine XGBoost with SHAP analysis
applied to predict wolf presence in Germany is promising as it
contributes to the improvement of ecological modeling in
general. The current model can also be directly used to predict
wolf presence in countries that currently deal with and have
conflicts with settling wolves, such as Denmark, The Neth-
erlands, and Belgium. The preparation of data sets will be
different between countries but will not alter the effectiveness
of XGBoost and SHAP and their potential to contribute to
management focused on promoting coexistence.
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