%%timeselected_models = [model for model in models().index if model notin ["lar", "lr", "ransac"]]best_model = compare_models(sort='RMSLE', include=selected_models)
Model
MAE
MSE
RMSE
R2
RMSLE
MAPE
TT (Sec)
lightgbm
Light Gradient Boosting Machine
18267.8967
969345616.0929
30245.0381
0.8400
0.1474
0.1051
0.3780
gbr
Gradient Boosting Regressor
18349.4461
1064907228.1139
31464.4286
0.8221
0.1497
0.1059
0.0810
rf
Random Forest Regressor
18834.6022
1052157810.7295
31669.8884
0.8263
0.1530
0.1091
0.1370
par
Passive Aggressive Regressor
18695.3332
1145943934.1128
32527.7429
0.8093
0.1535
0.1061
0.0560
en
Elastic Net
19941.1185
1212771199.2709
33679.9238
0.8018
0.1536
0.1131
0.0370
et
Extra Trees Regressor
19749.8604
1158574471.9795
33510.6172
0.8073
0.1591
0.1138
0.1370
huber
Huber Regressor
18580.7407
1172797296.1965
32571.8573
0.8024
0.1602
0.1069
0.0420
br
Bayesian Ridge
20557.3468
1251454965.3245
34036.3809
0.7934
0.1715
0.1191
0.0380
ard
Automatic Relevance Determination
20446.5401
1229331466.4696
33711.3986
0.7969
0.1747
0.1193
0.2740
omp
Orthogonal Matching Pursuit
21882.7966
1294135379.9217
34955.8947
0.7847
0.1849
0.1296
0.0340
ada
AdaBoost Regressor
24866.3282
1379609584.9159
36498.7175
0.7707
0.2036
0.1621
0.0580
knn
K Neighbors Regressor
26571.2016
1730405638.7521
40931.3774
0.7200
0.2050
0.1518
0.0360
dt
Decision Tree Regressor
27747.5148
2157234242.4490
45330.0191
0.6512
0.2169
0.1564
0.0350
llar
Lasso Least Angle Regression
21458.2025
1320695830.3446
35006.4301
0.7809
0.2187
0.1268
0.0380
lasso
Lasso Regression
21455.6793
1320742178.3808
35006.1951
0.7809
0.2189
0.1268
0.2100
ridge
Ridge Regression
21439.2241
1318937040.3720
34981.0548
0.7812
0.2196
0.1266
0.0360
svm
Support Vector Regression
55543.3805
6417749387.4994
79739.3850
-0.0524
0.3979
0.3195
0.0450
dummy
Dummy Regressor
57352.4774
6133919031.8184
78021.7431
-0.0086
0.4061
0.3635
0.0340
tr
TheilSen Regressor
29178.3219
2564758742.0908
49572.3895
0.5667
0.4258
0.1978
4.0290
kr
Kernel Ridge
182040.0692
34133507087.4154
184731.2672
-4.7500
1.7994
1.1623
0.0380
mlp
MLP Regressor
166456.5847
32851392125.7179
181040.0031
-4.4796
2.7703
0.9182
0.2890
CPU times: user 4.09 s, sys: 446 ms, total: 4.53 s
Wall time: 1min 3s
Evaluation
With a standard, AutoML-like workflow, we achive RMSLE of 0.13 - 0.14 (over different runs), which is already in the top 25% of the 4,200 submissions on the leaderboard